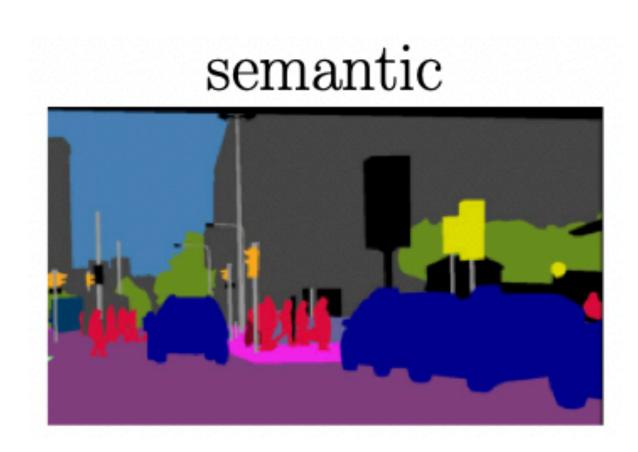


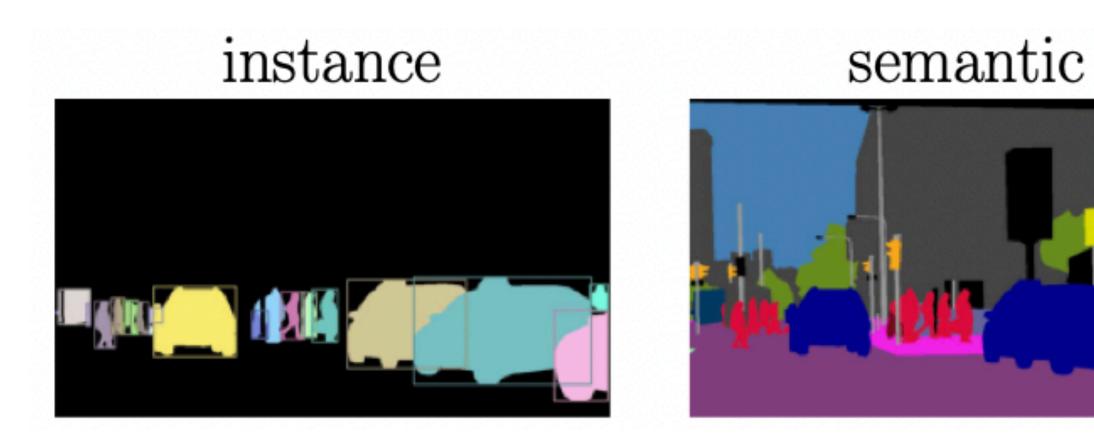
Panoptic Segmentation with Transformers Tutorial

Mennatullah Siam

Semantic/Instance/Panoptic Segmentation



Semantic/Instance/Panoptic Segmentation

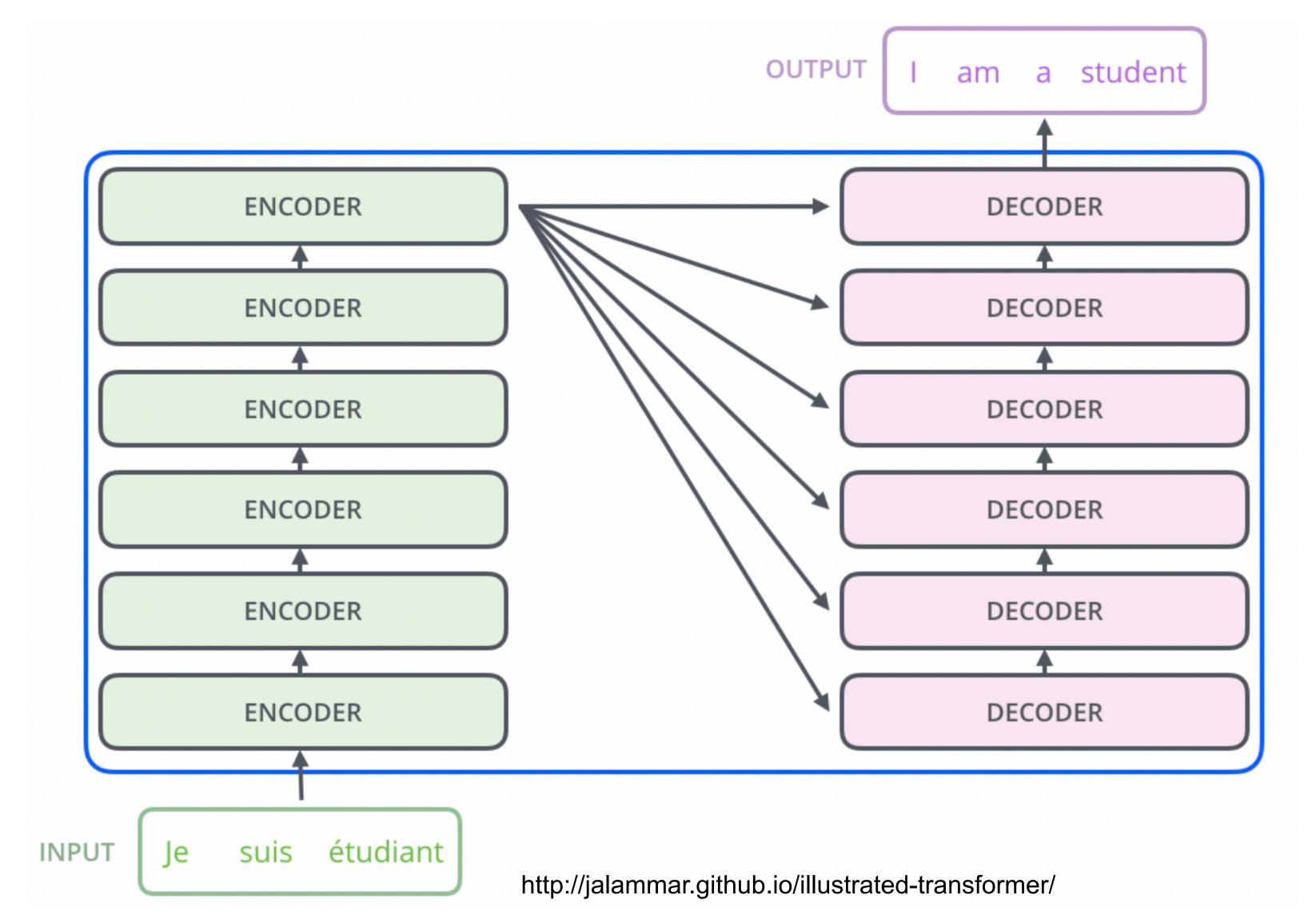


Semantic/Instance/Panoptic Segmentation

Holistic Scene Understanding

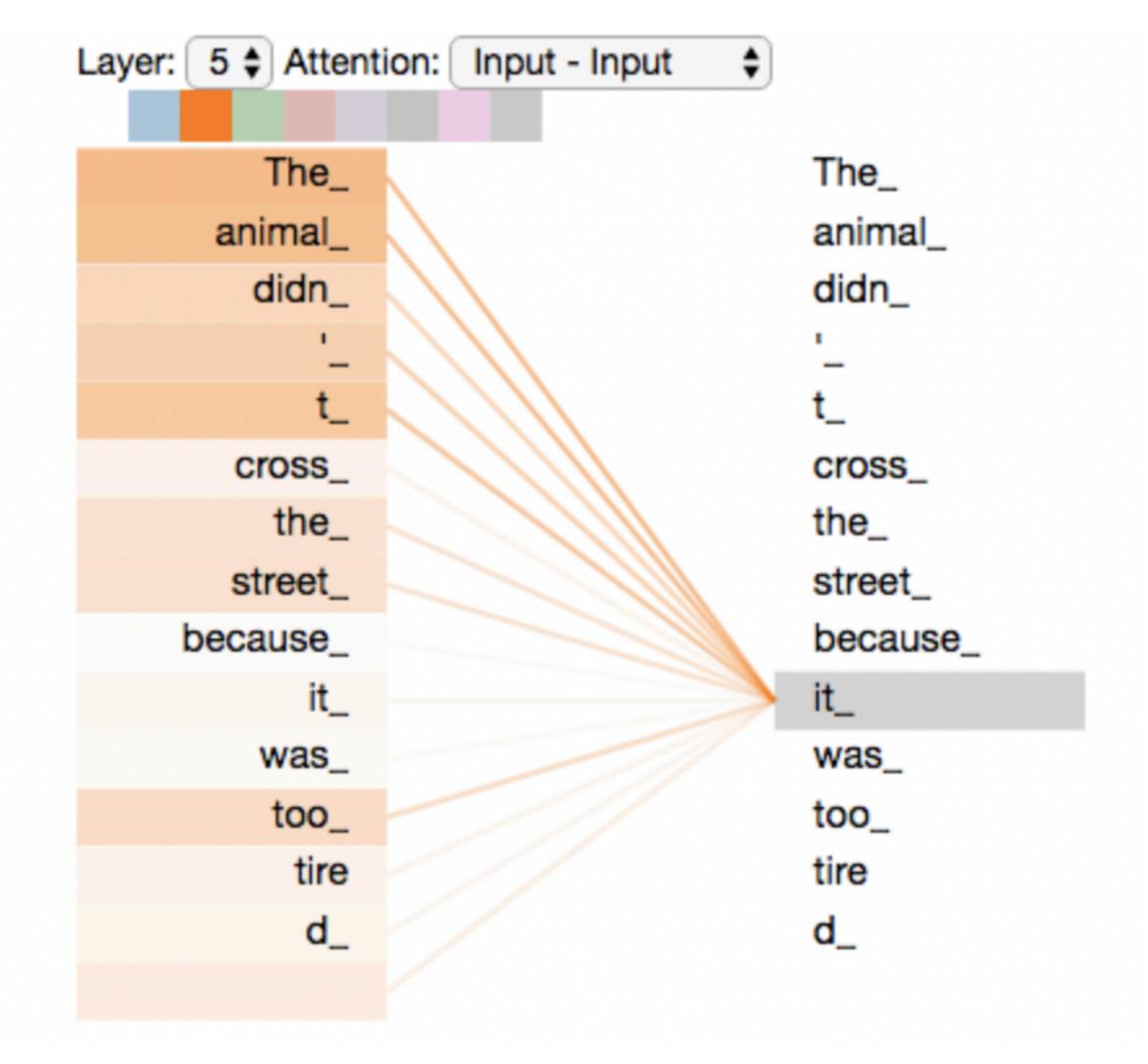
Transformers

Transformers



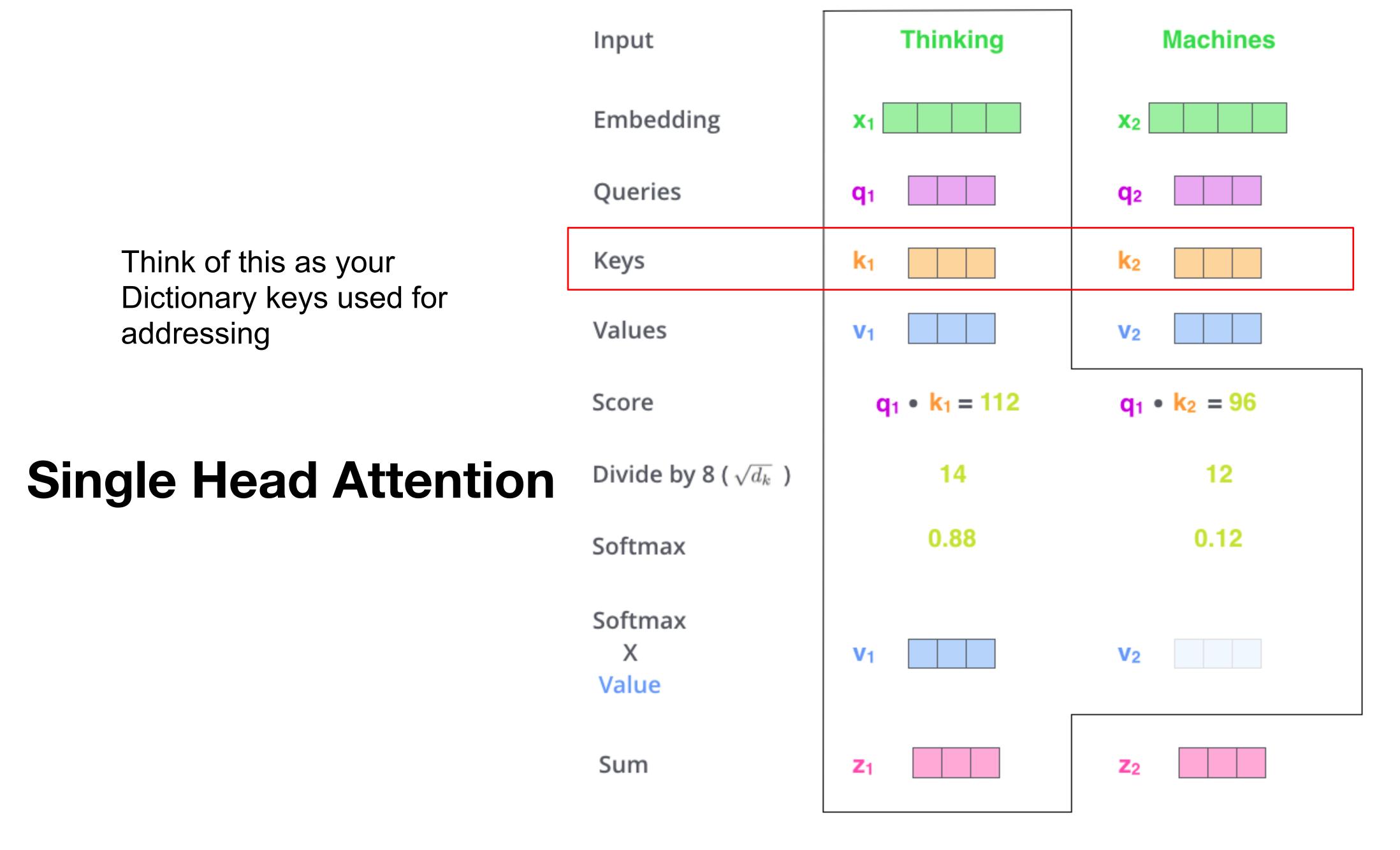
Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).

Self Attention

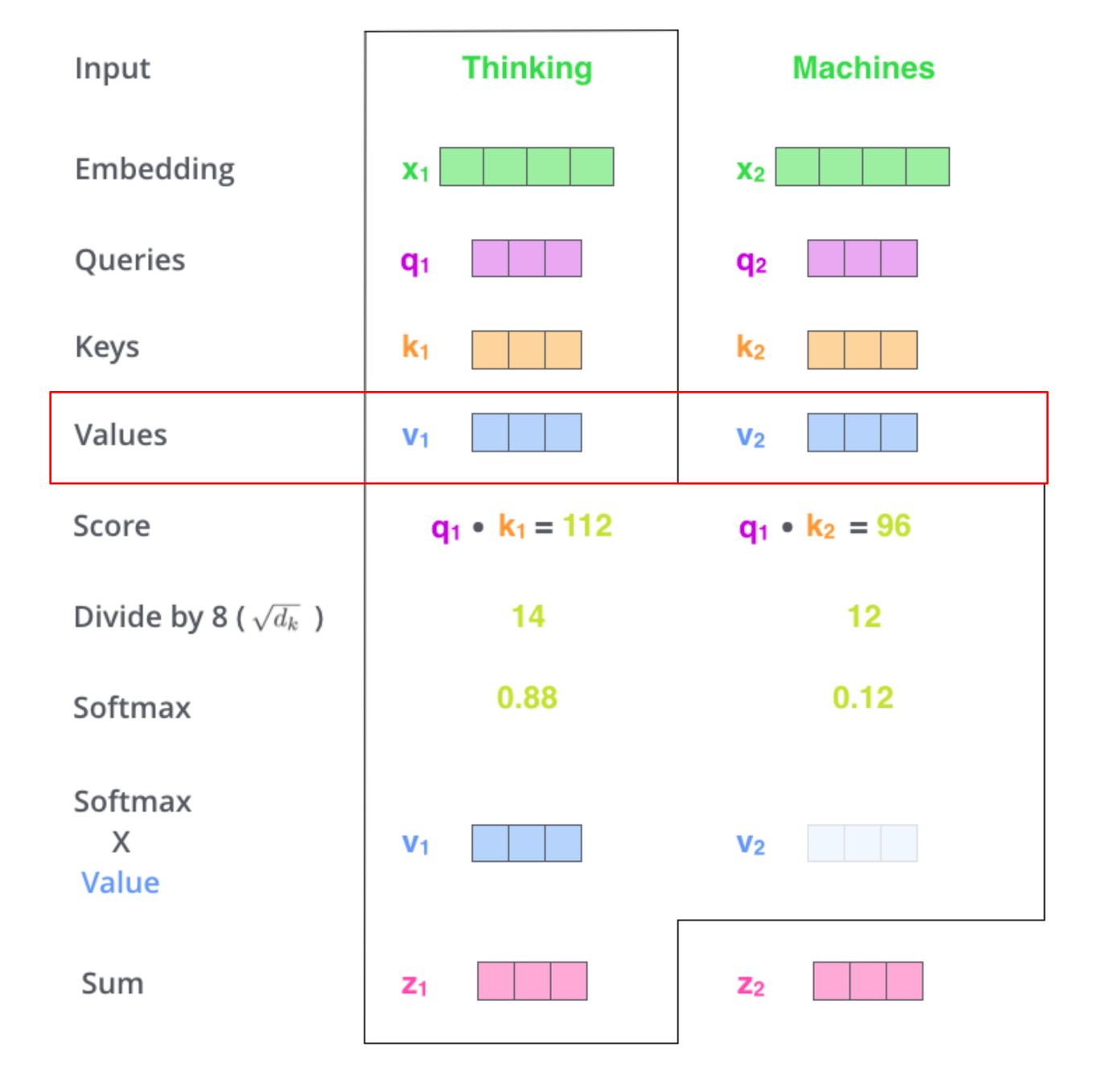


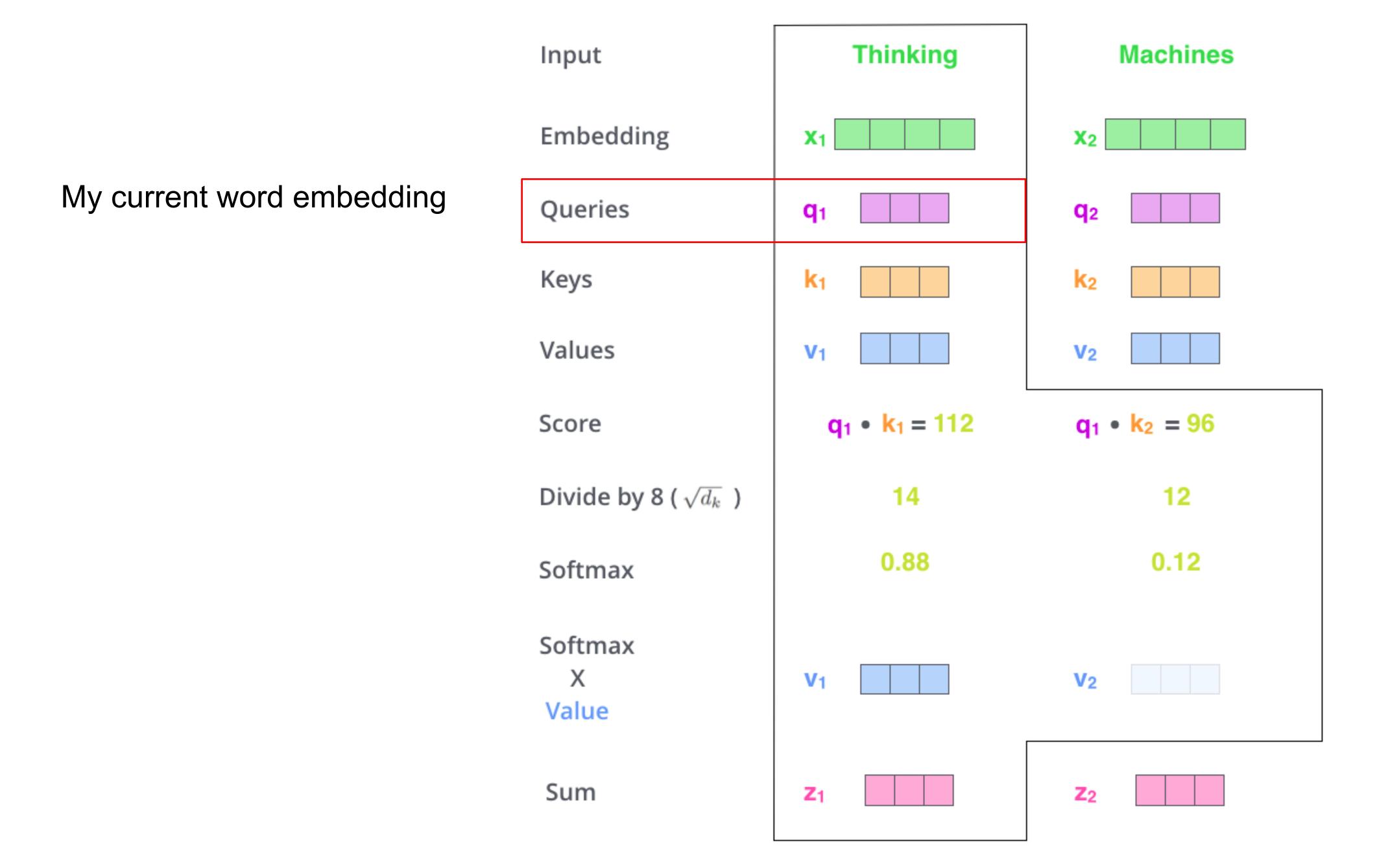
http://jalammar.github.io/illustrated-transformer/

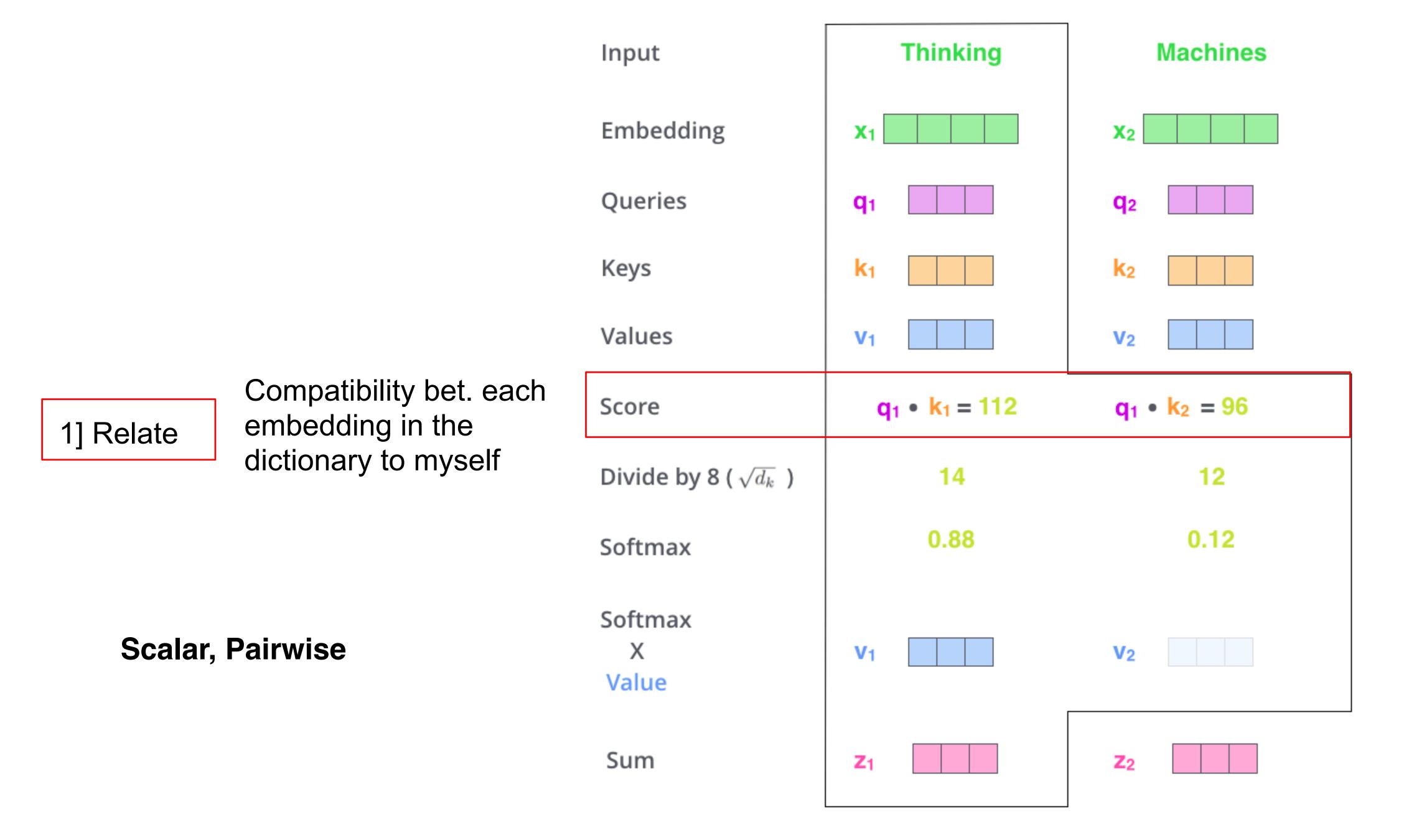
Vaswani, Ashish, et al. "Attention is all you need." Advances in neural information processing systems 30 (2017).



Detailed information - what I want to read out from memory



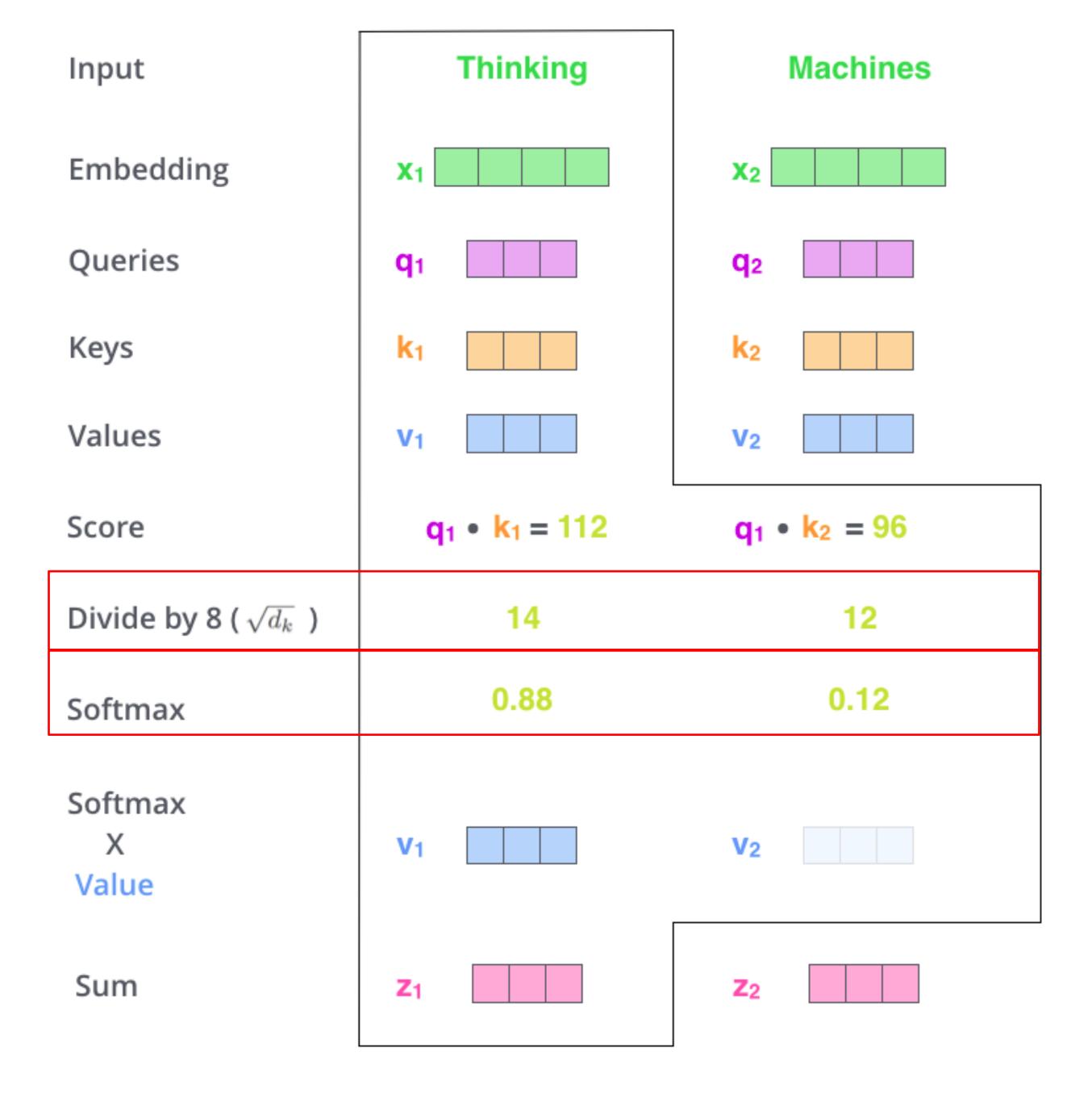


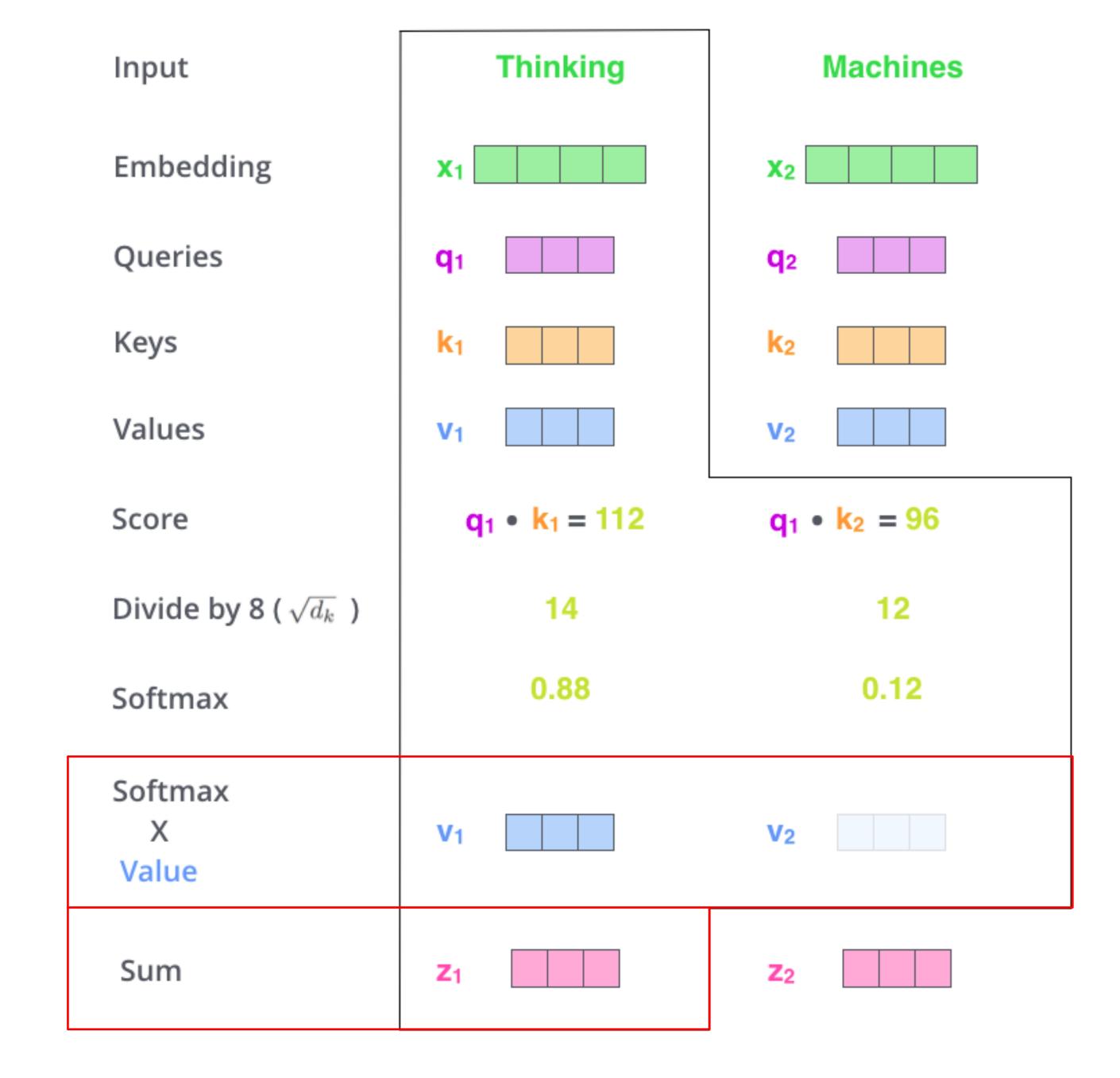


1] Relate

Scaled: because for large values of d_k

- →large values of dot product
- → pushes the softmax to have small gradients.

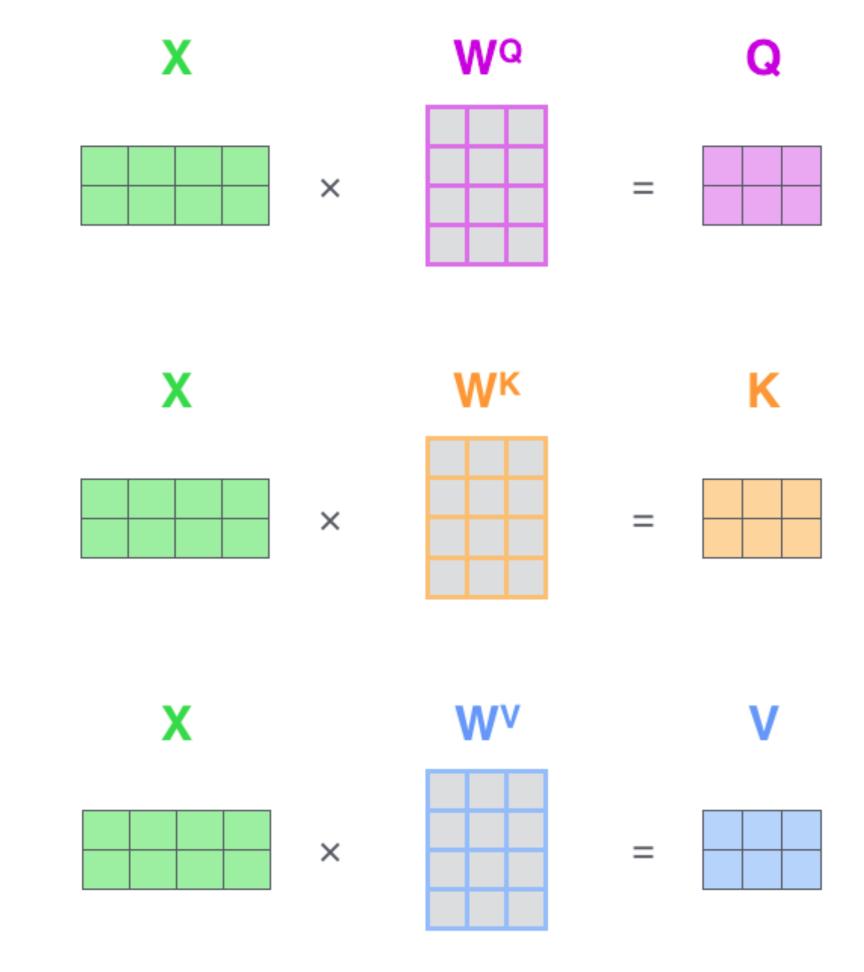




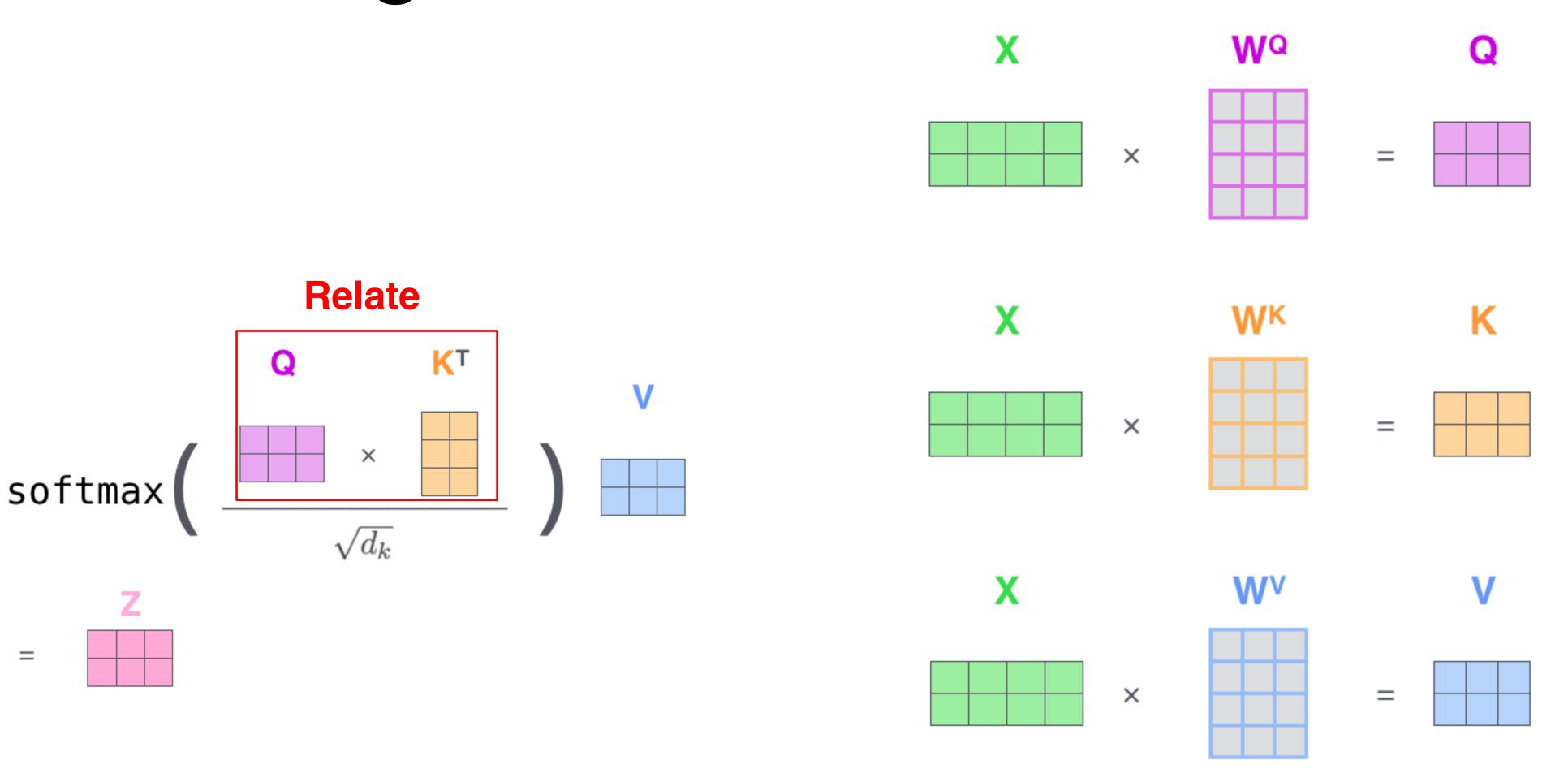
2] Aggregate

Aggregate information from all tokens

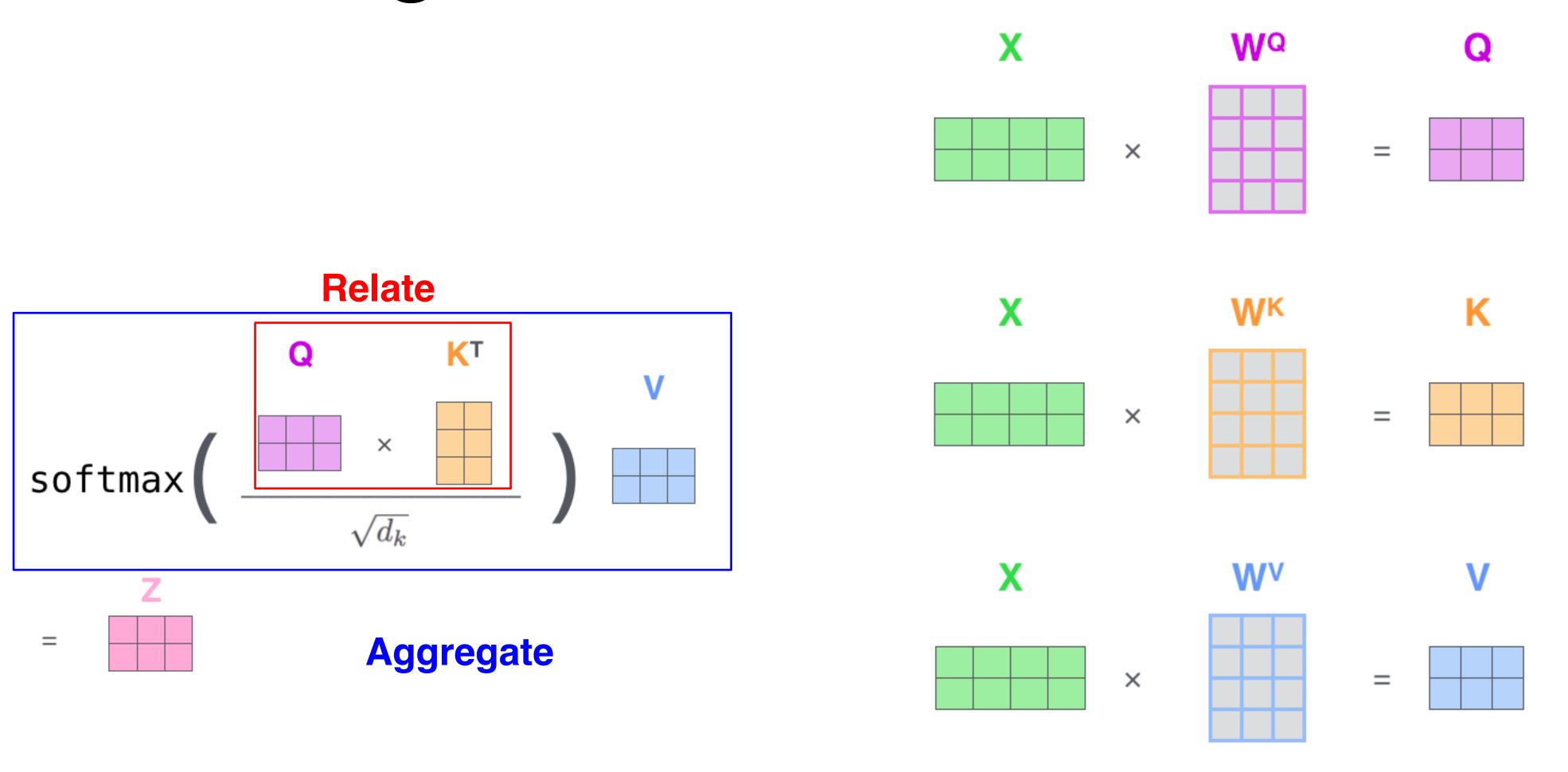
Single-Headed Attention



Single-Headed Attention



Single-Headed Attention

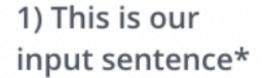


1) This is our input sentence* each word*

2) We embed

Thinking Machines

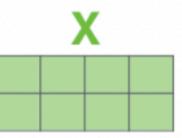
* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one



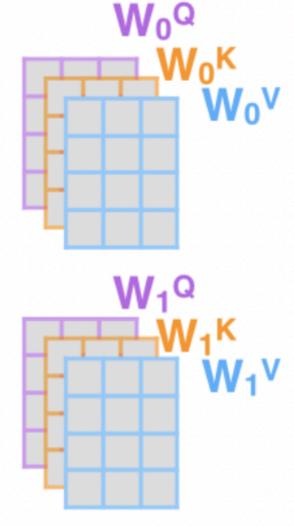
2) We embed each word*

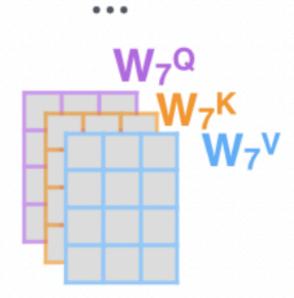
3) Split into 8 heads. We multiply X or R with weight matrices

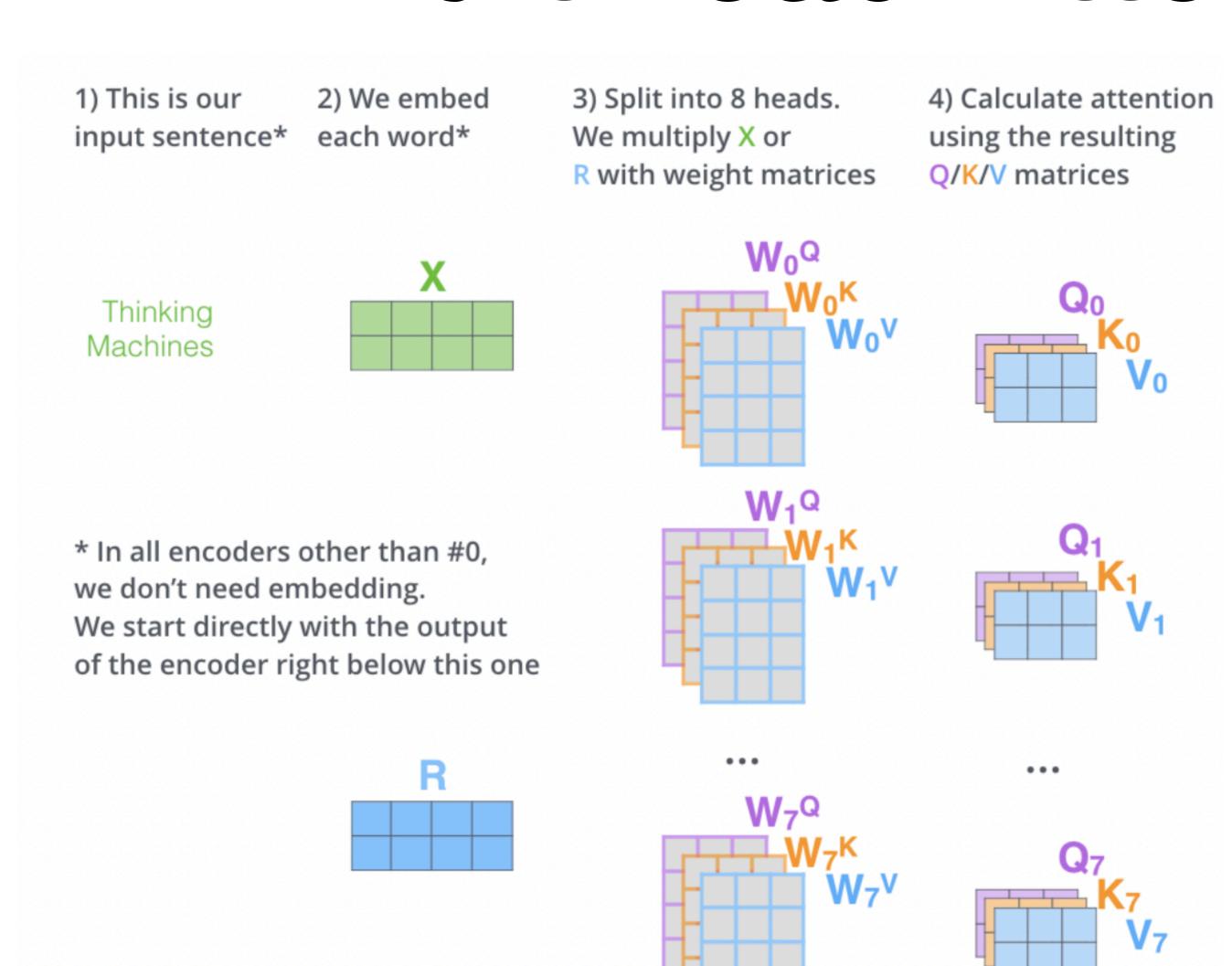
Thinking Machines



* In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

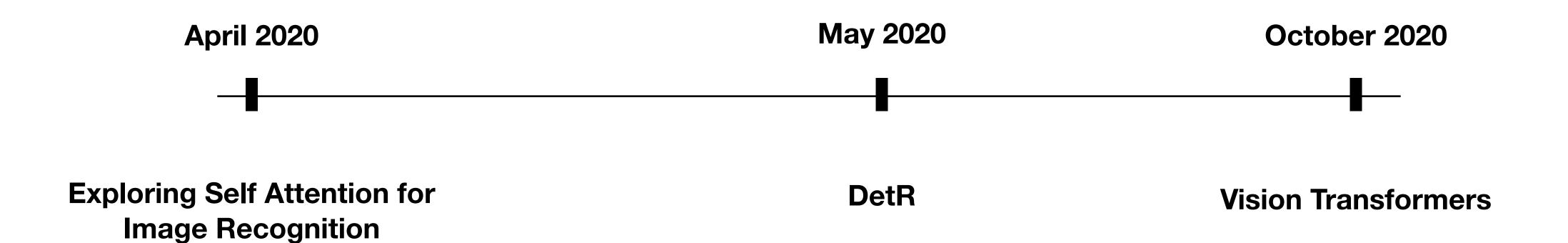


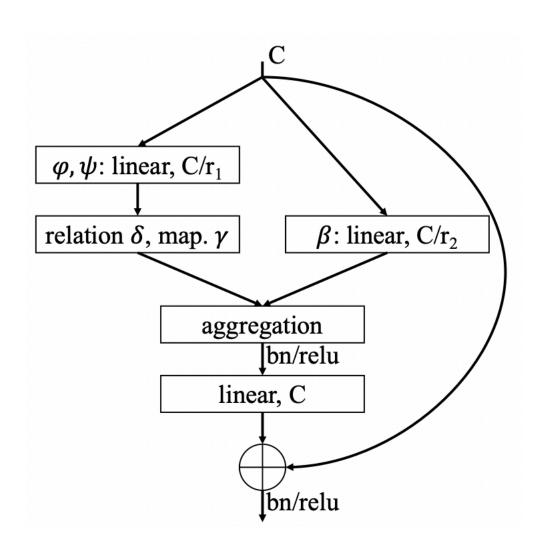




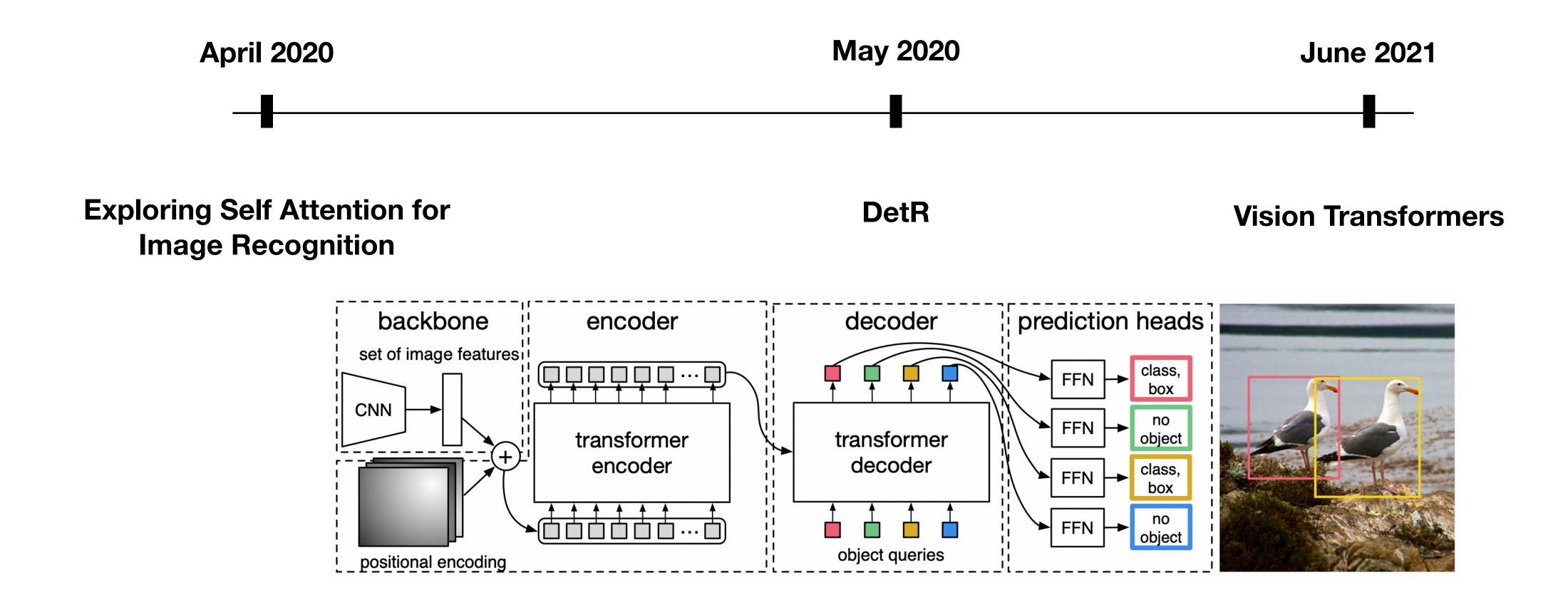
1) This is our 3) Split into 8 heads. 4) Calculate attention 5) Concatenate the resulting Z matrices, 2) We embed then multiply with weight matrix Wo to We multiply X or input sentence* each word* using the resulting R with weight matrices produce the output of the layer Q/K/V matrices W_0^Q Thinking Machines Wo * In all encoders other than #0, we don't need embedding. We start directly with the output of the encoder right below this one

Transformers in Computer Vision

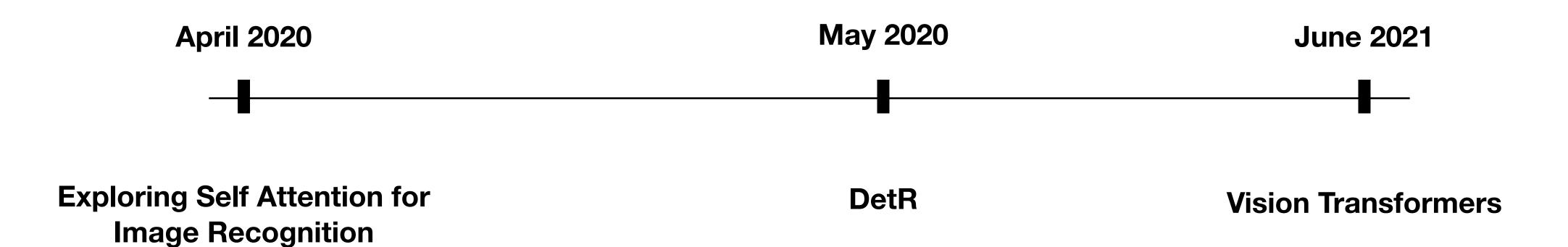


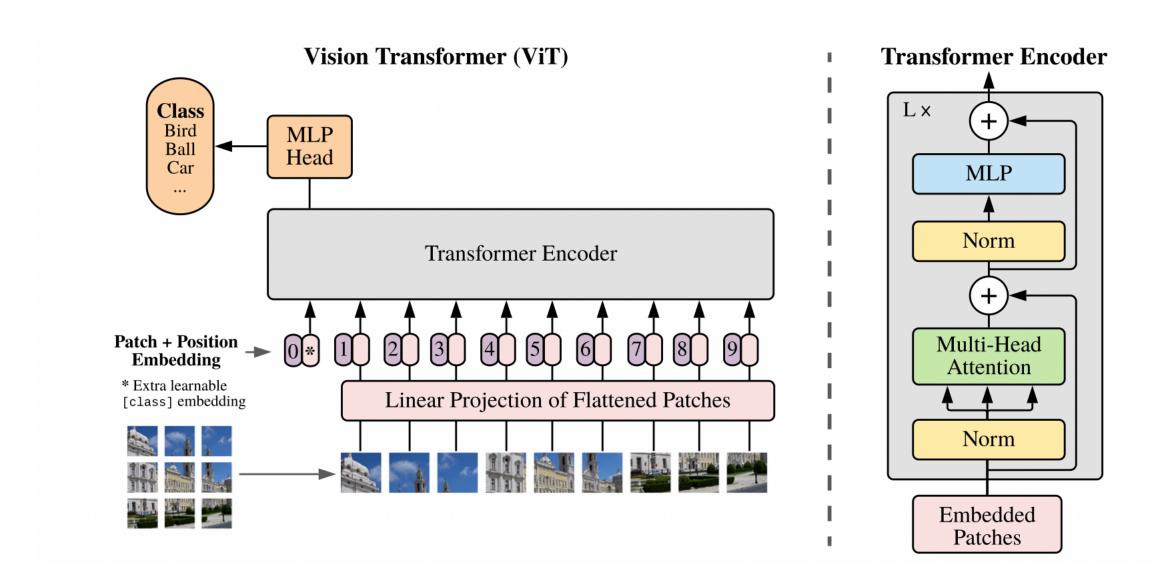


Transformers in Computer Vision



Transformers in Computer Vision

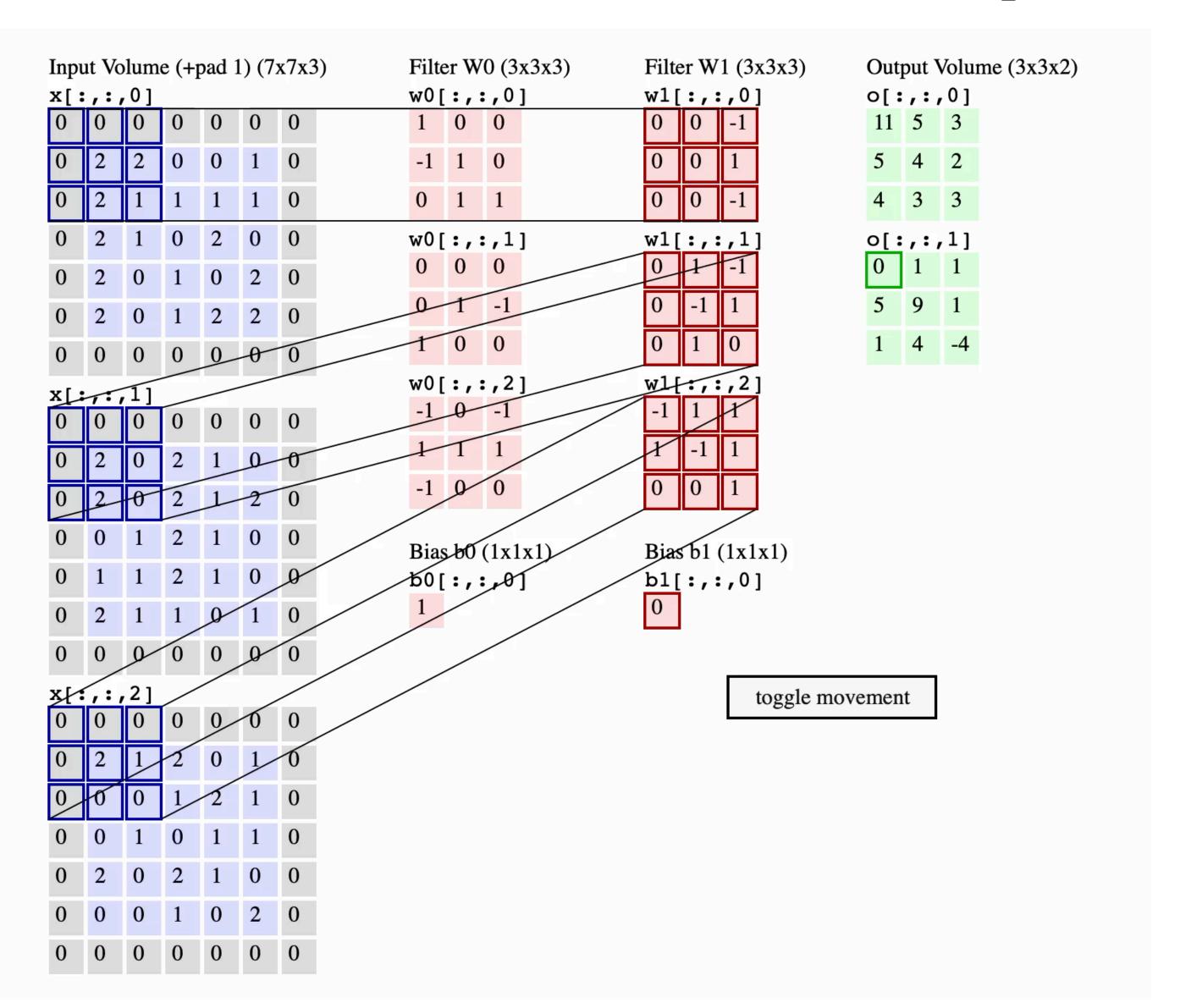




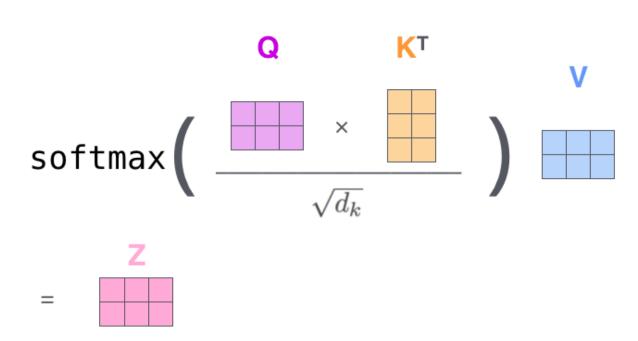
Convolutional Networks

Aggregate Function

Fixed Weights

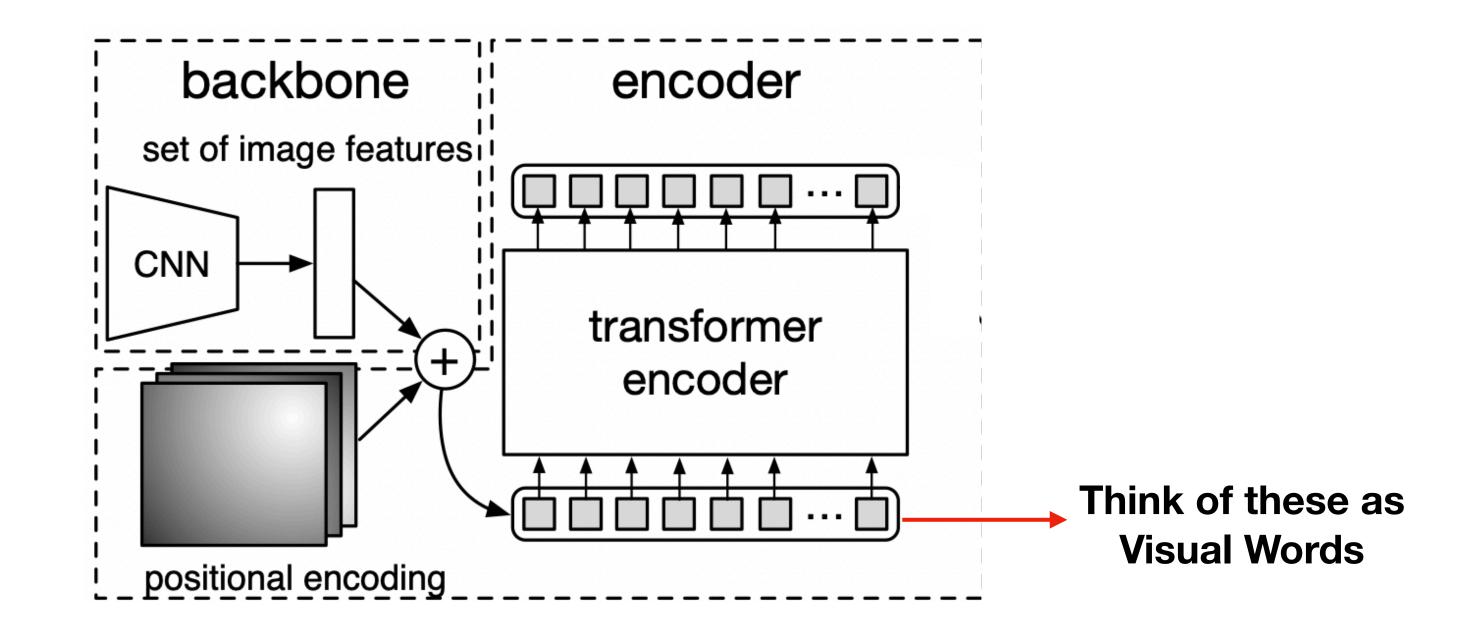


Transformers



Aggregate Function

Content Adaptive Weights

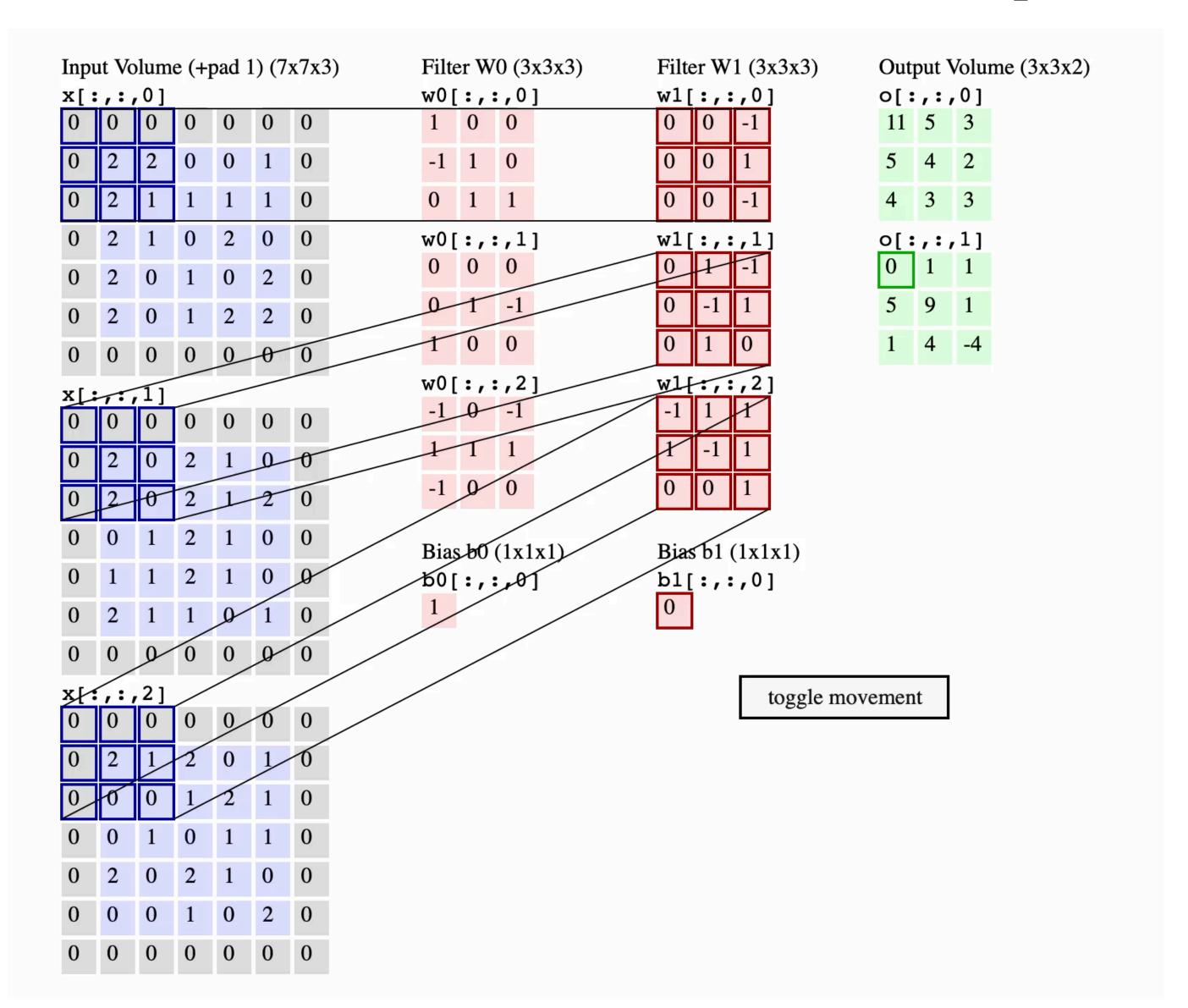


Tokens: Flattened CNN features

Convolutional Networks

Aggregate Function

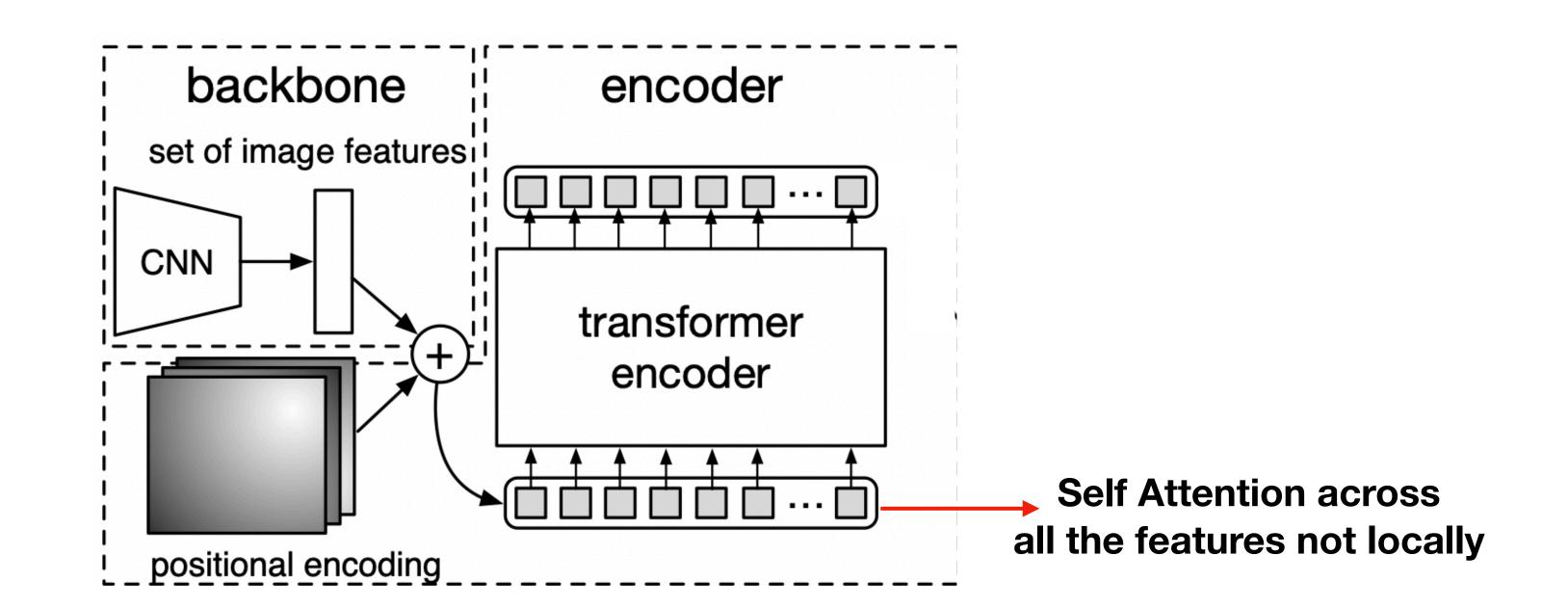
Local



Transformers

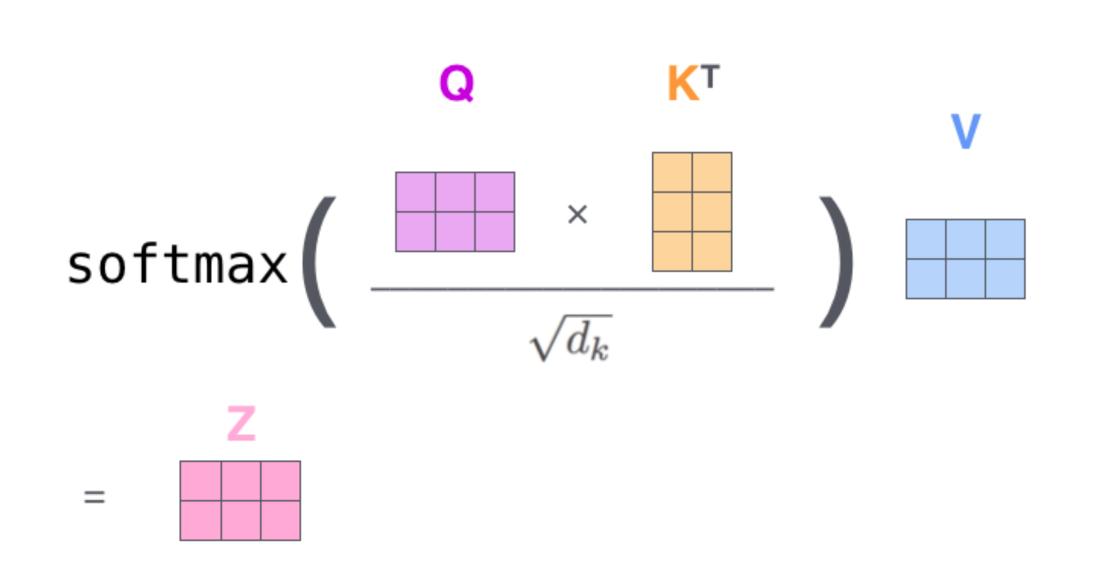
Aggregate Function

Global Context

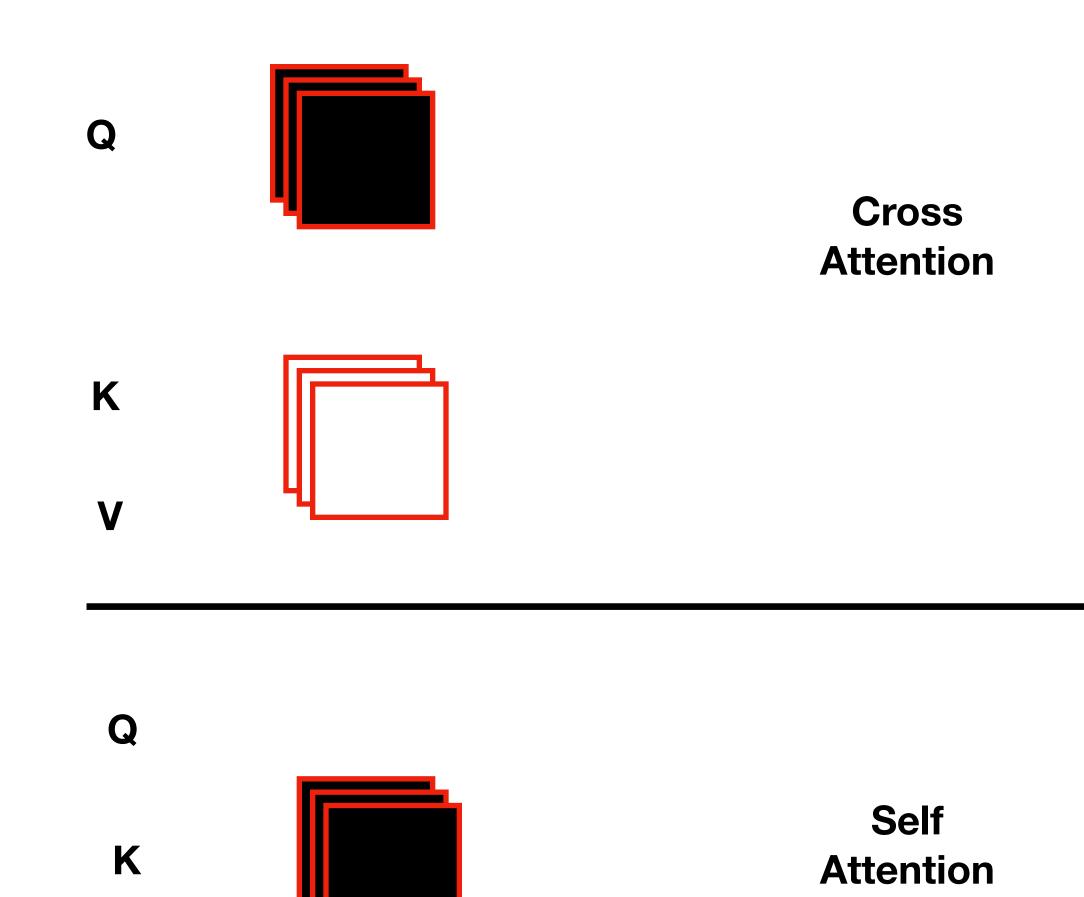


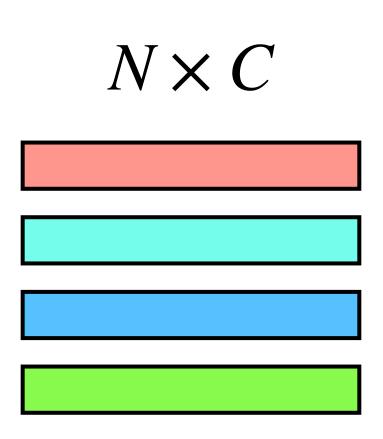
Tokens: Flattened CNN features

Self Attention vs Cross Attention

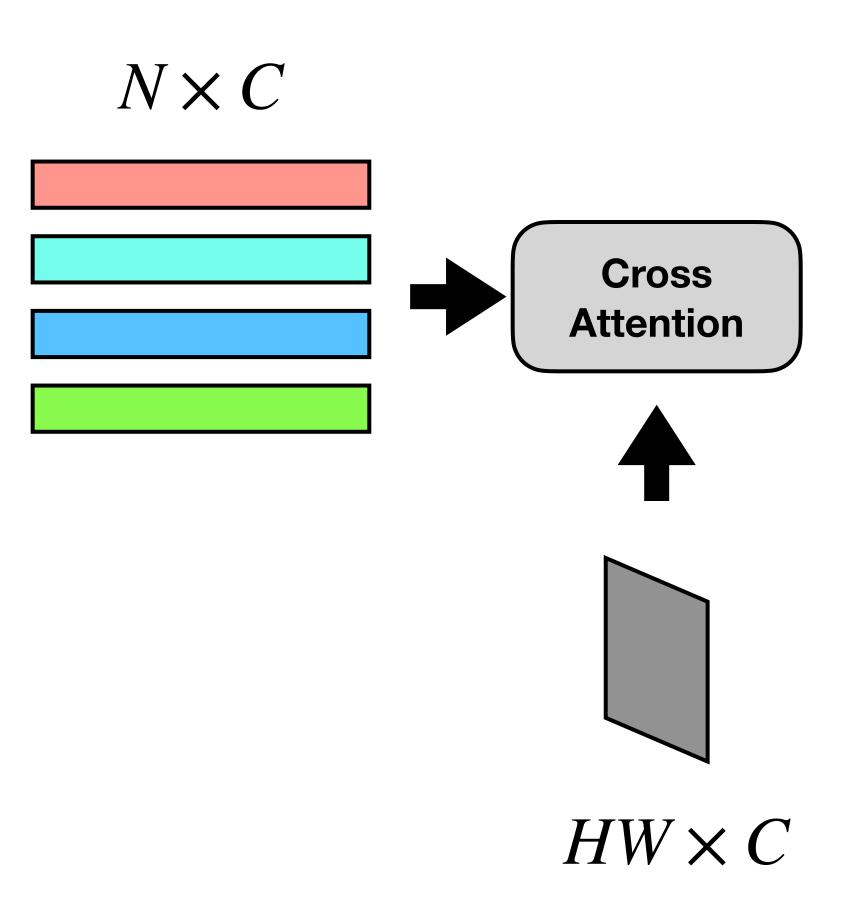


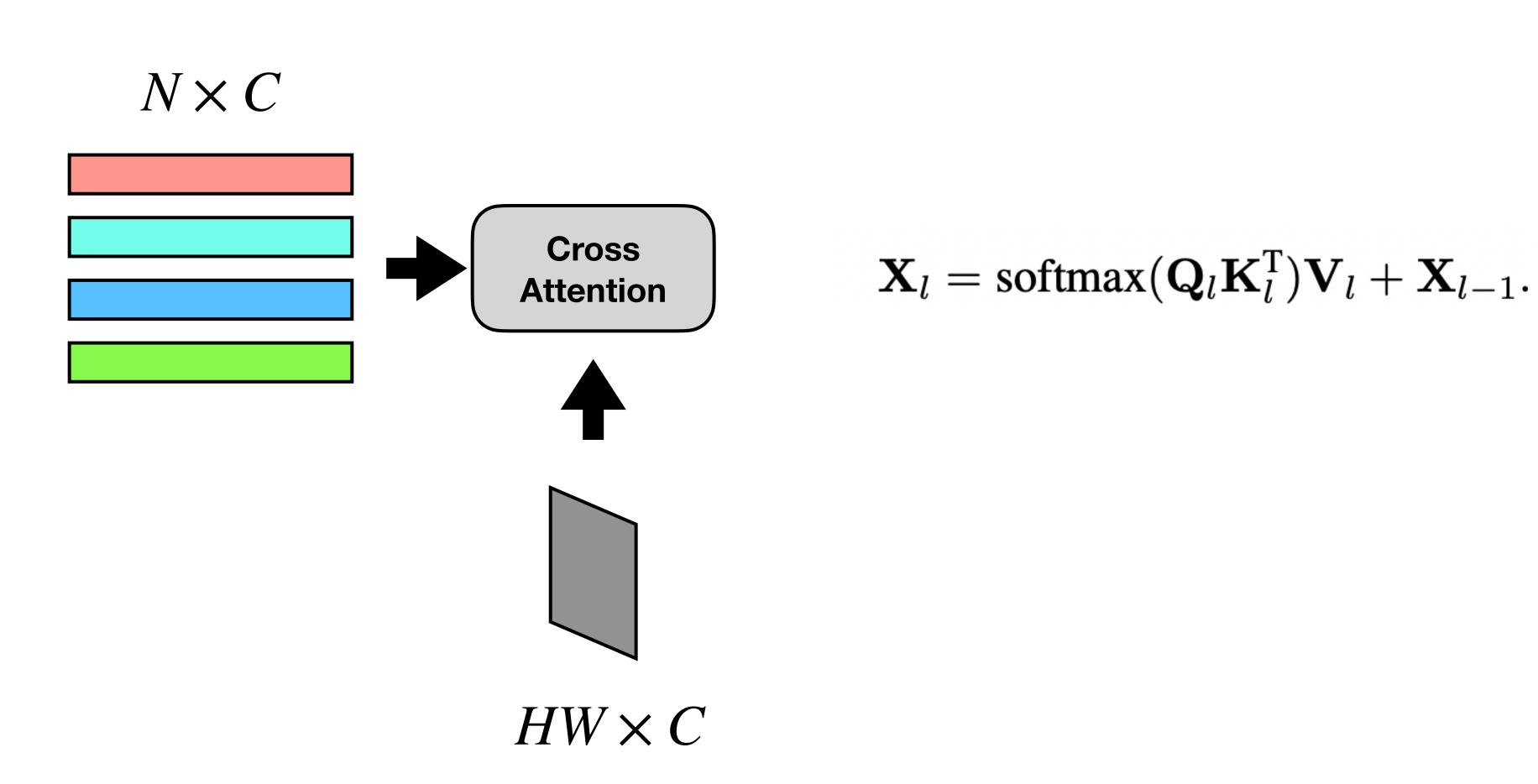
MultiHeaded Attention in both

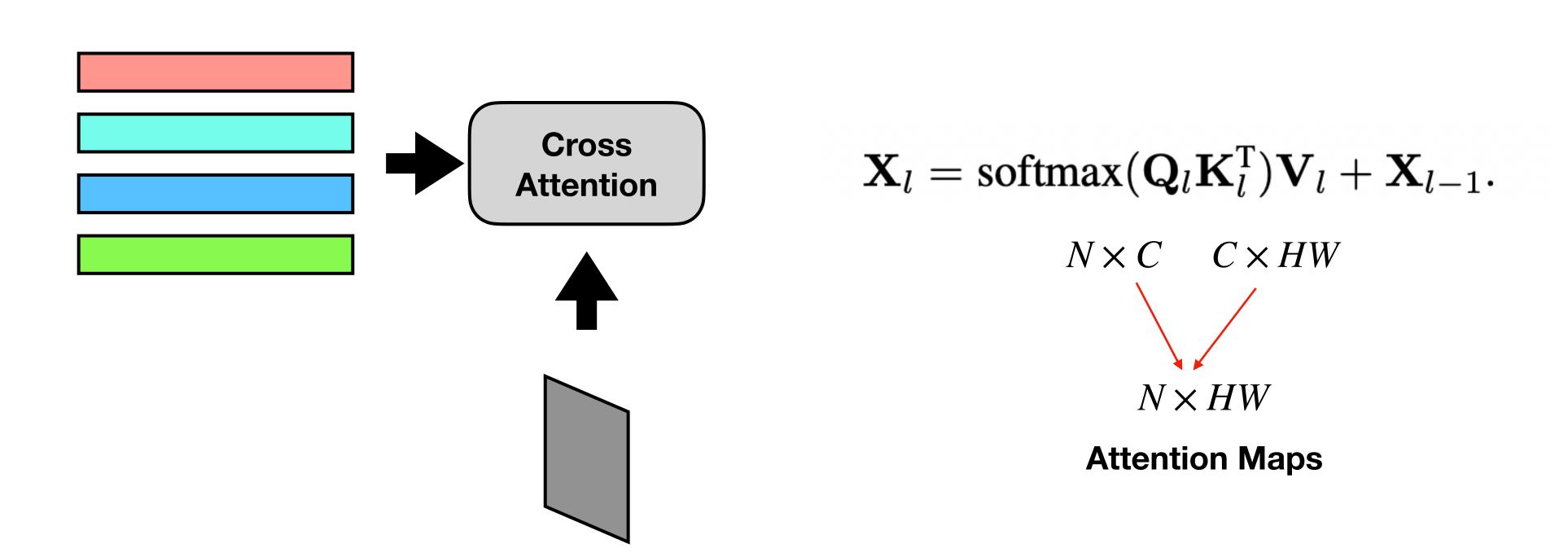




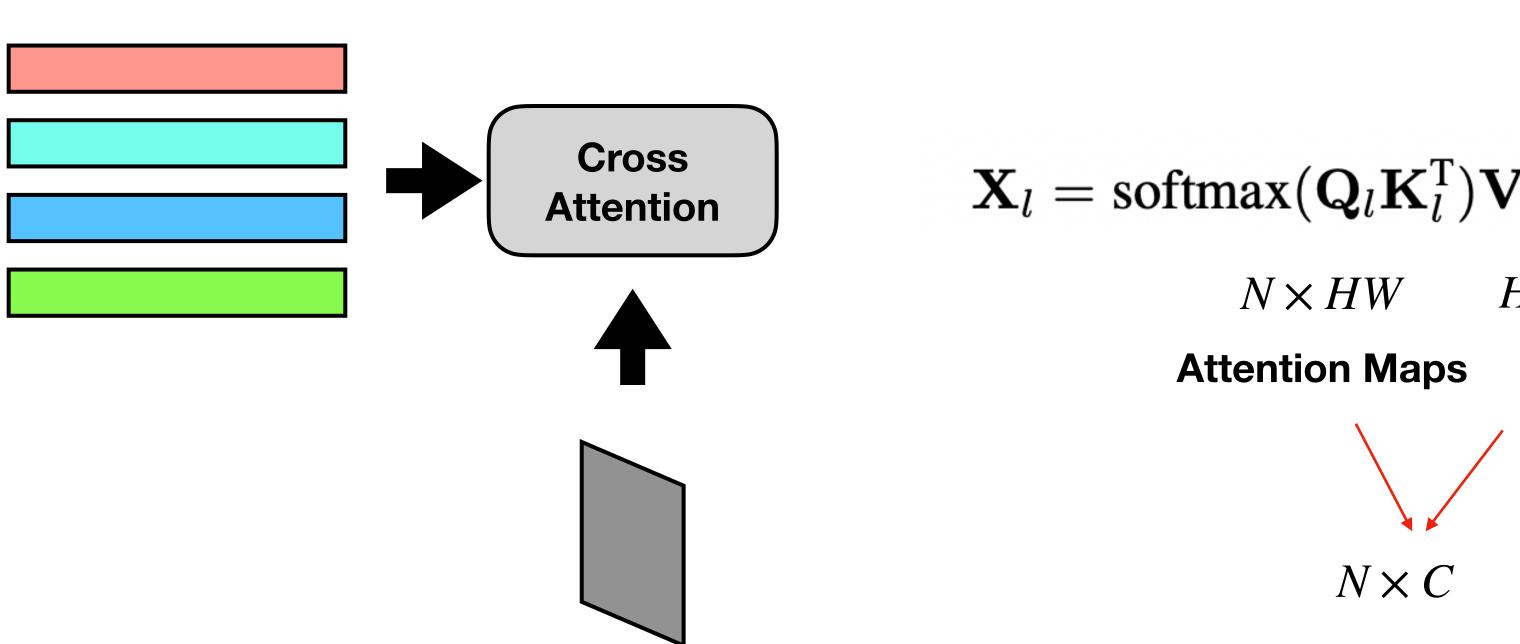
Learnable Queries







Relate

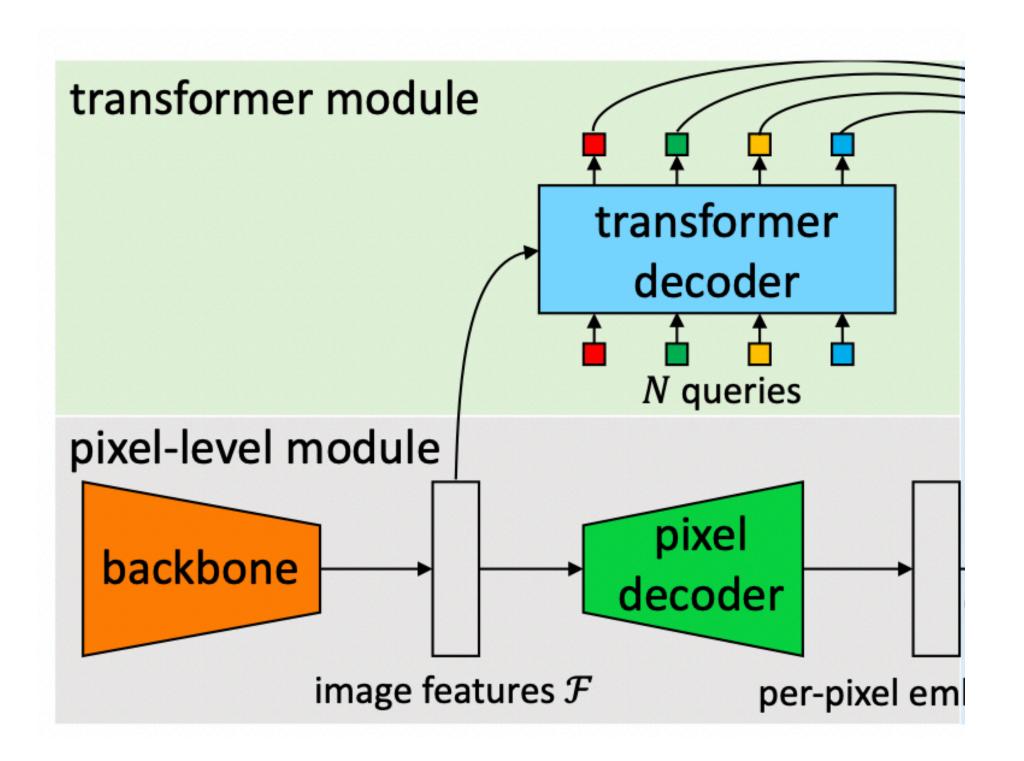


$$\mathbf{X}_l = \operatorname{softmax}(\mathbf{Q}_l \mathbf{K}_l^{\mathrm{T}}) \mathbf{V}_l + \mathbf{X}_{l-1}.$$

 $HW \times C$

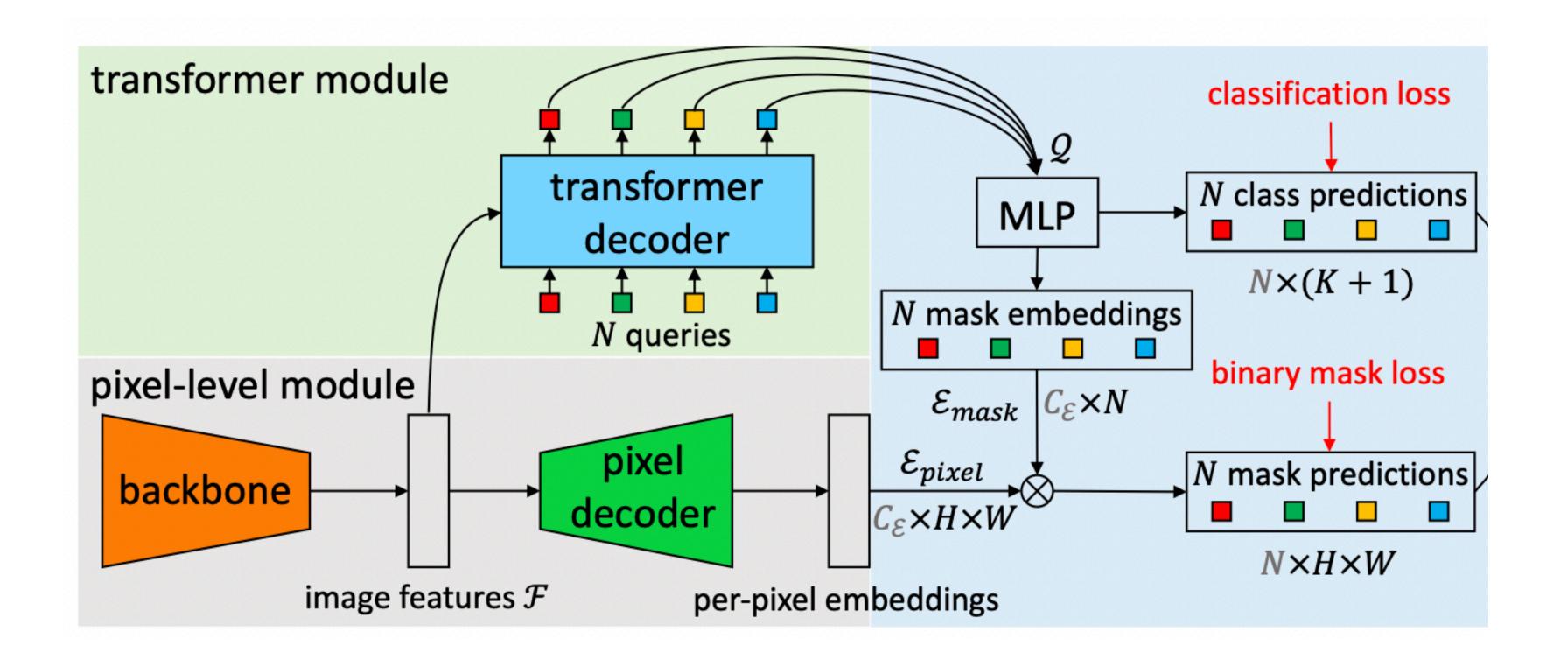
Aggregate

MaskFormer



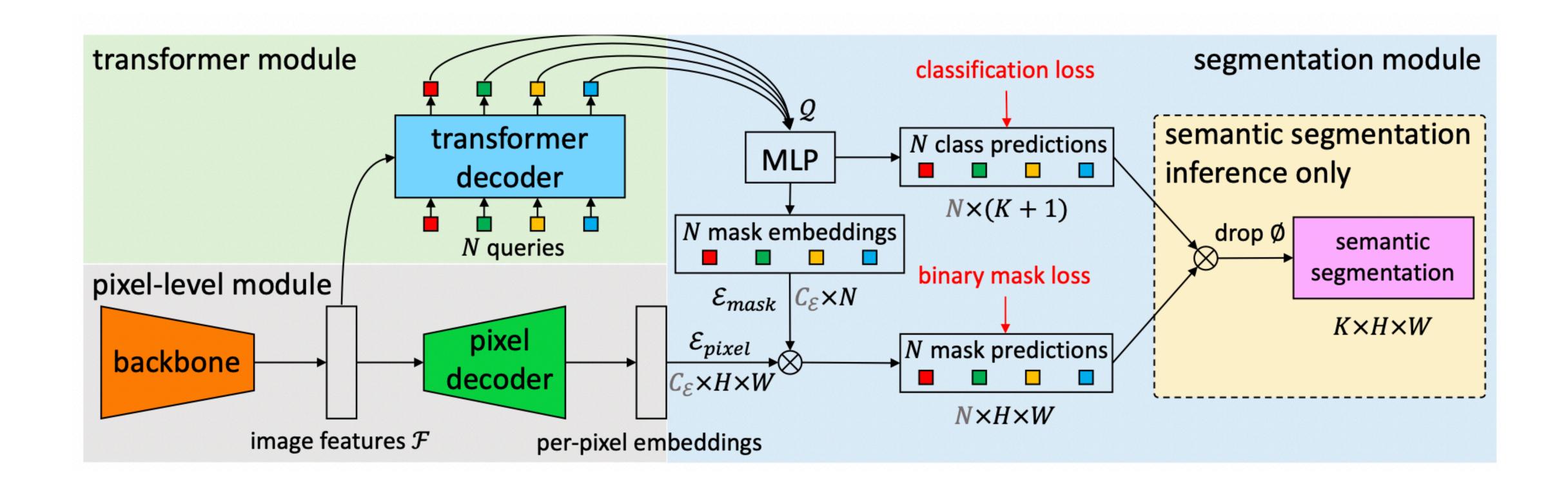
Cheng, Bowen, Alex Schwing, and Alexander Kirillov. "Per-pixel classification is not all you need for semantic segmentation." *Advances in Neural Information Processing Systems* 34 (2021): 17864-17875.

MaskFormer

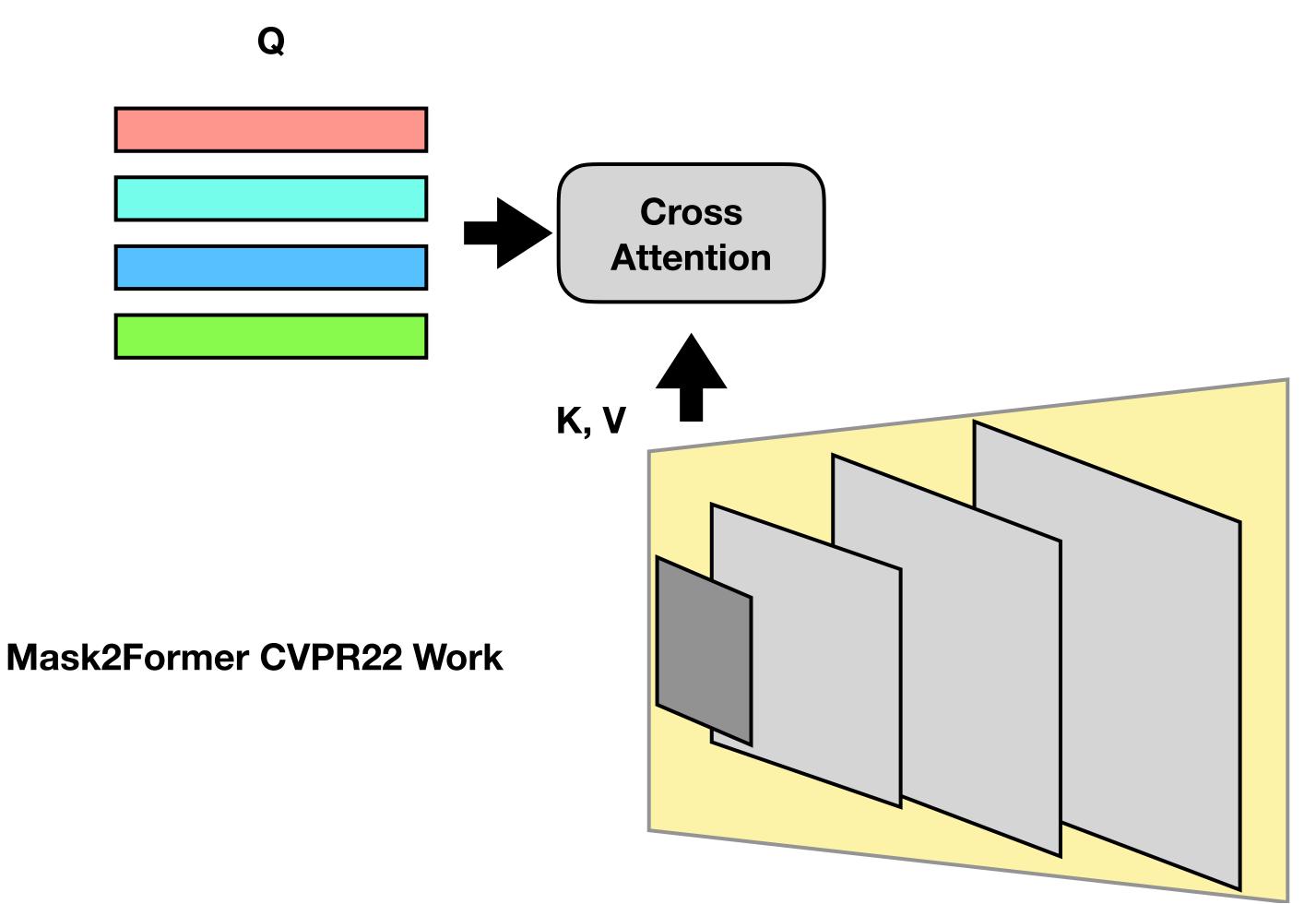


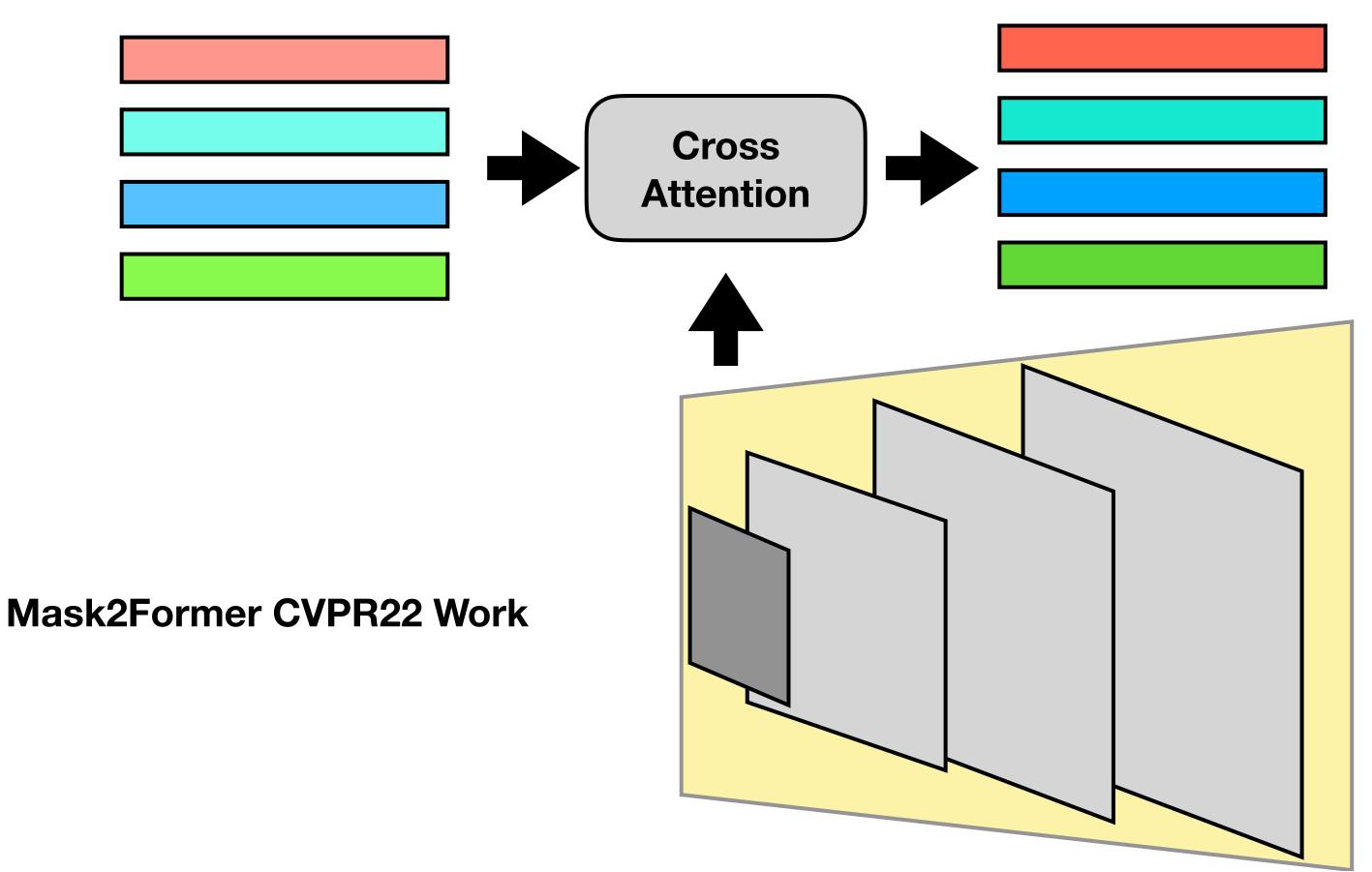
Cheng, Bowen, Alex Schwing, and Alexander Kirillov. "Per-pixel classification is not all you need for semantic segmentation." Advances in Neural Information Processing Systems 34 (2021): 17864-17875.

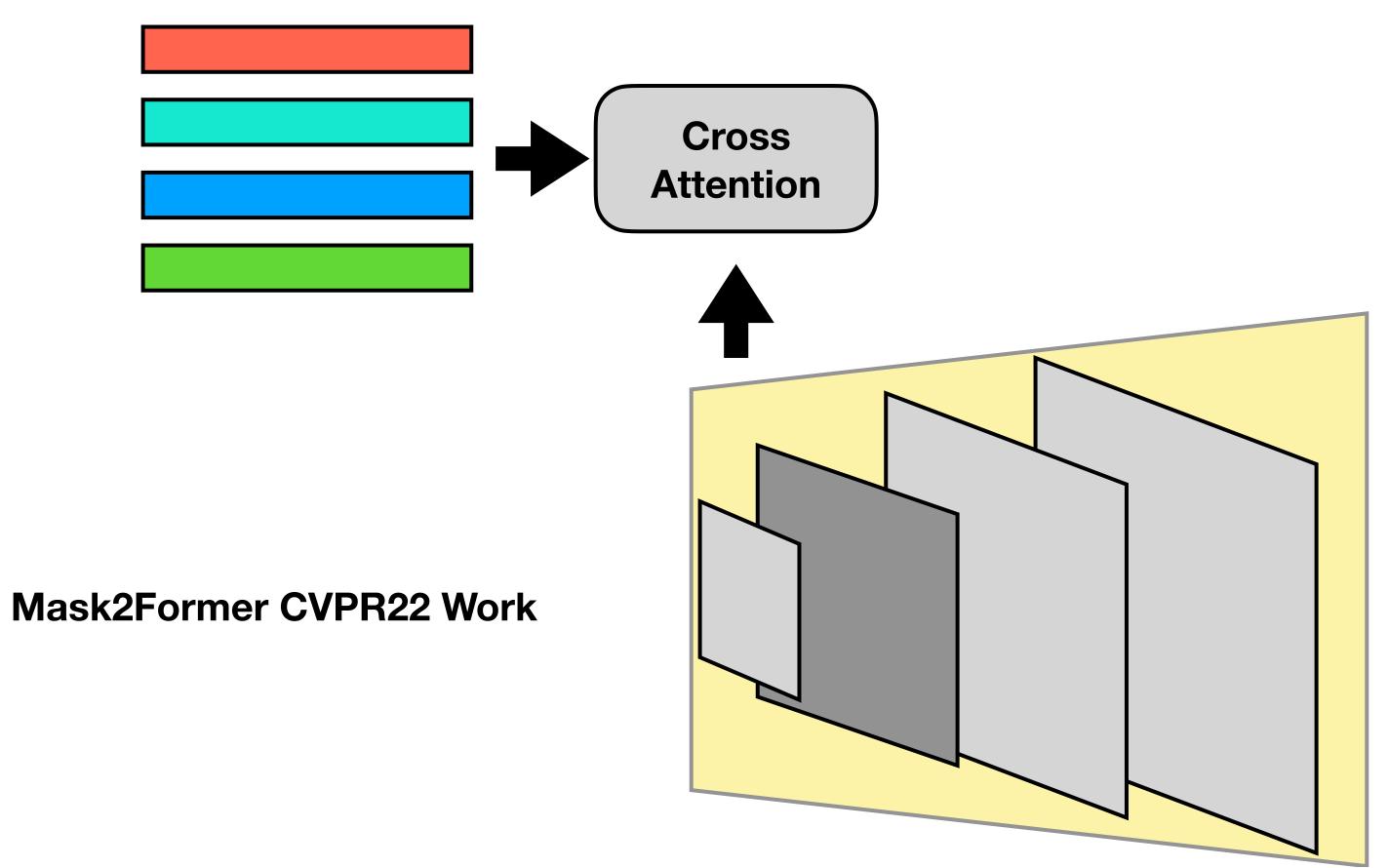
MaskFormer

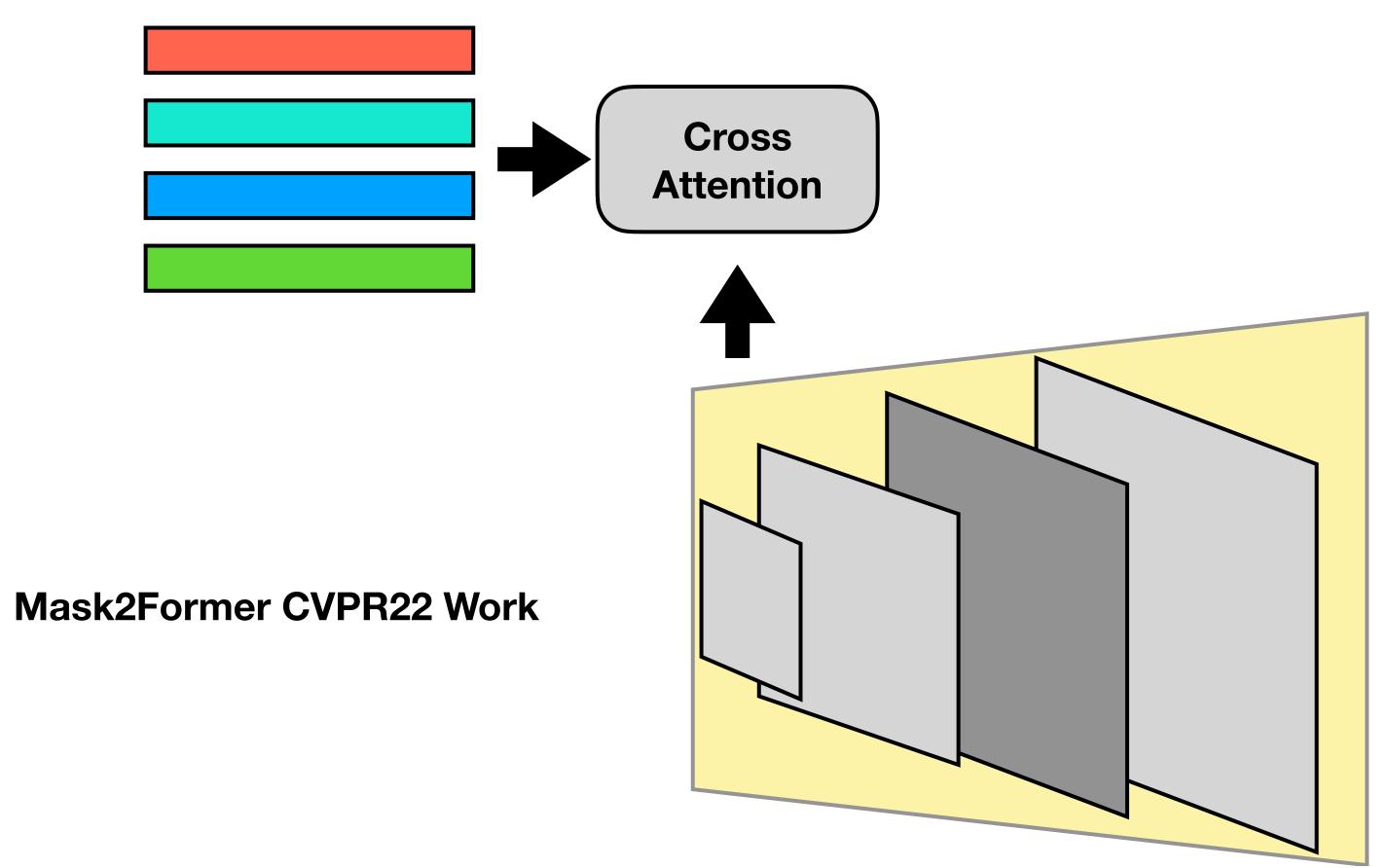


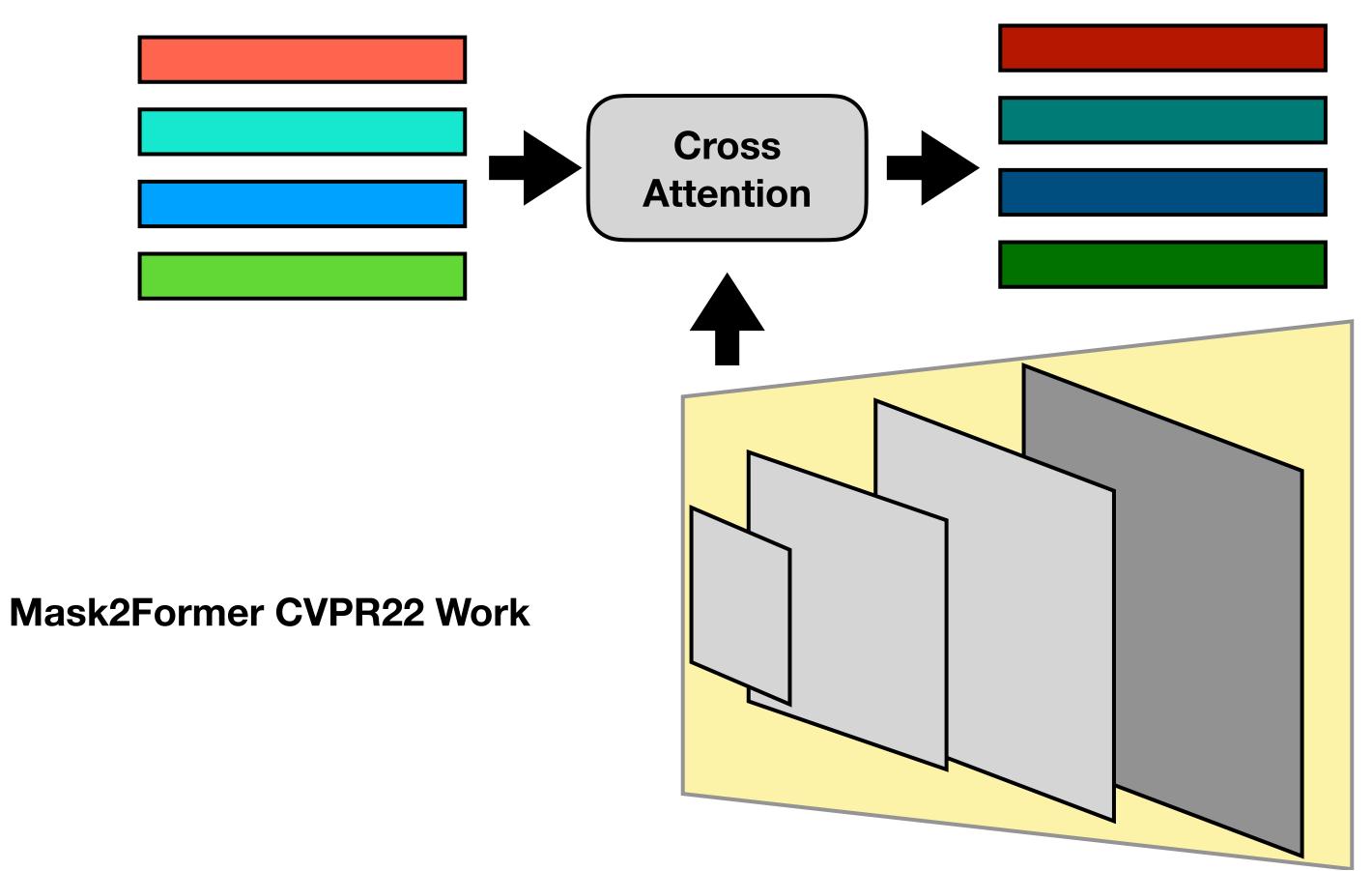
Cheng, Bowen, Alex Schwing, and Alexander Kirillov. "Per-pixel classification is not all you need for semantic segmentation." *Advances in Neural Information Processing Systems* 34 (2021): 17864-17875.



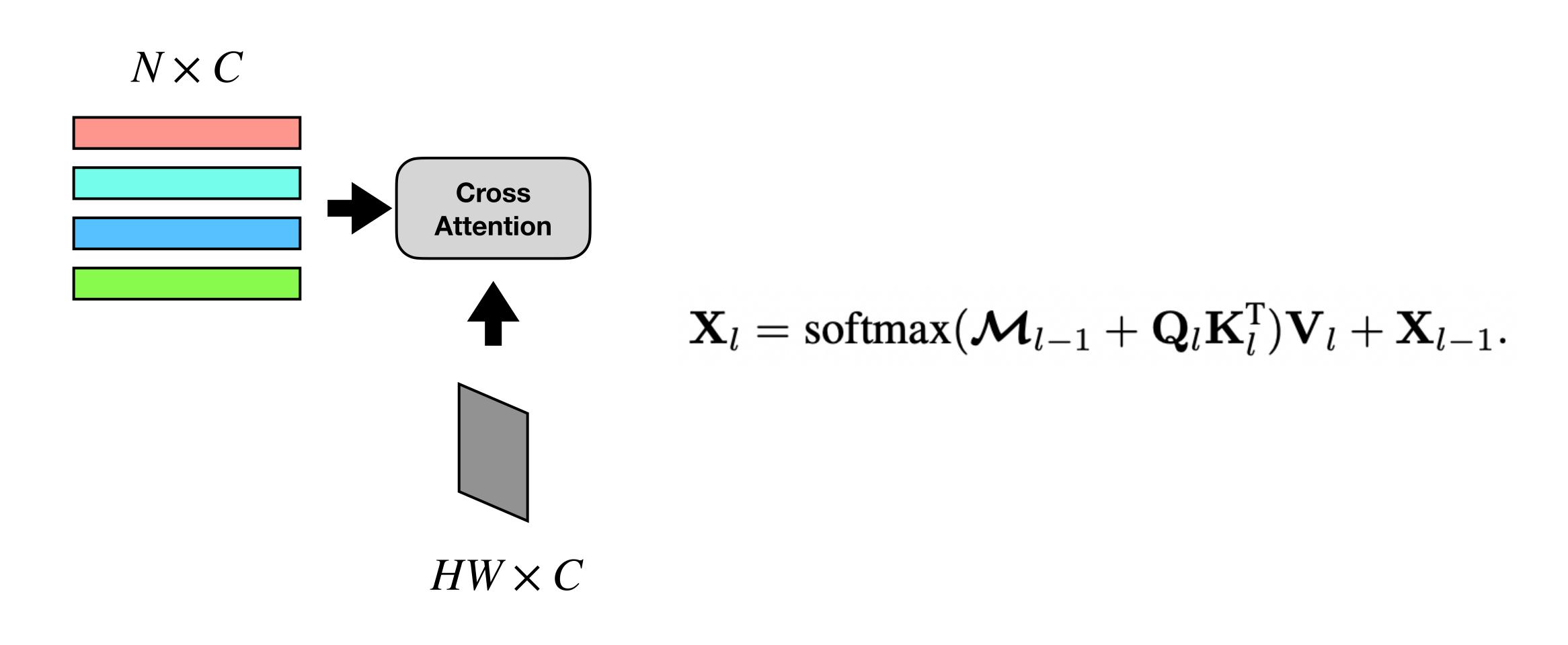




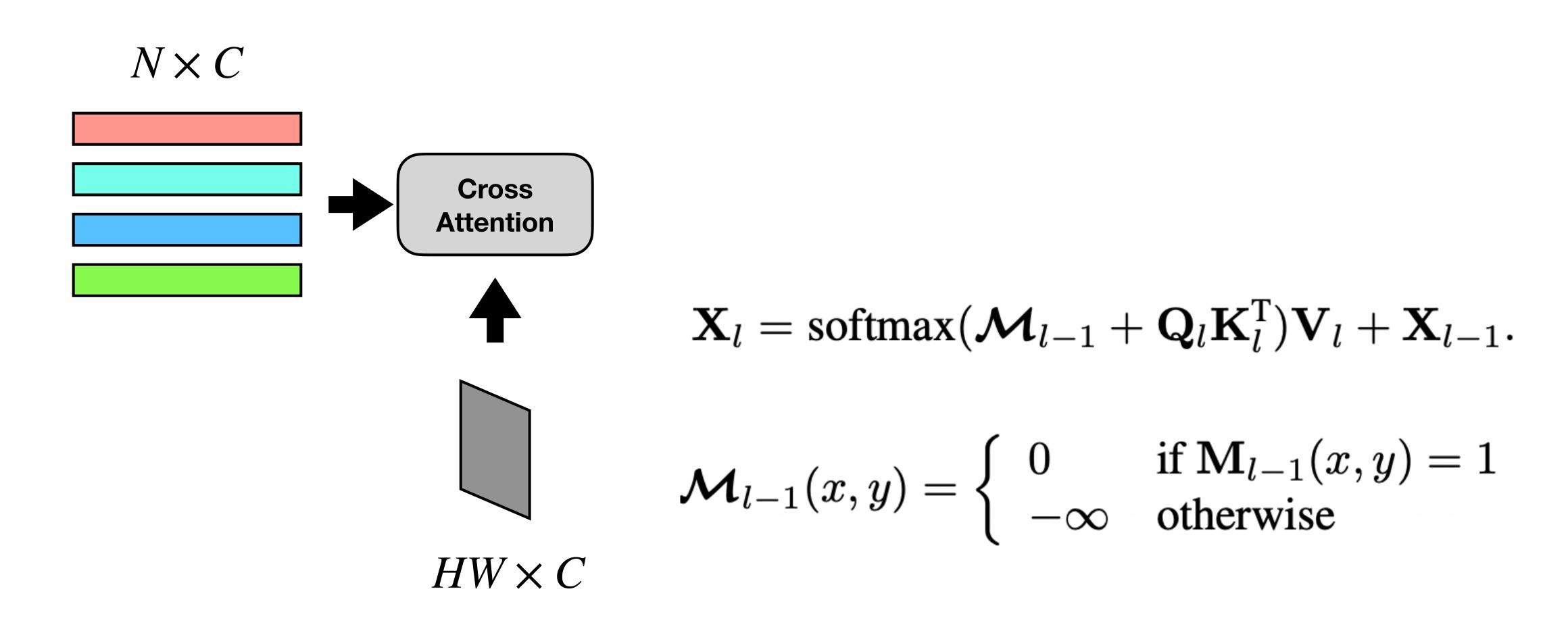




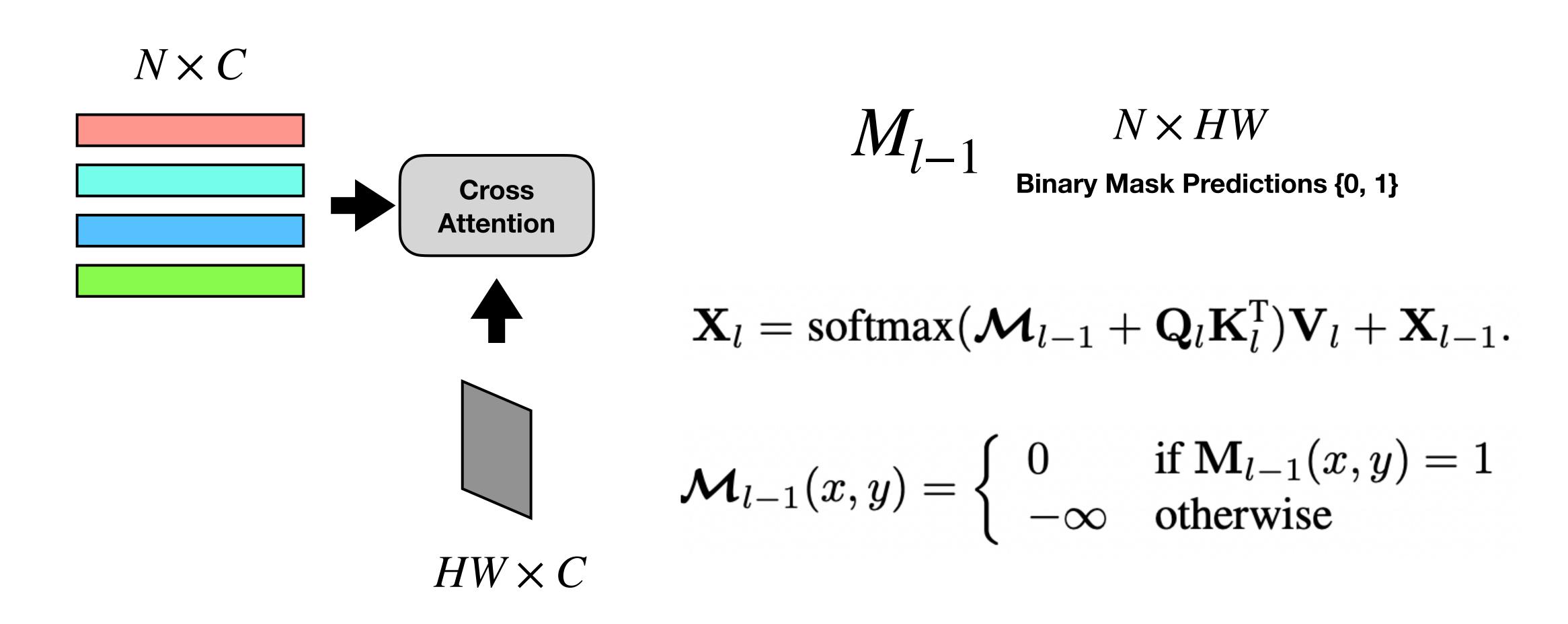
Mask2Former Masked Attention



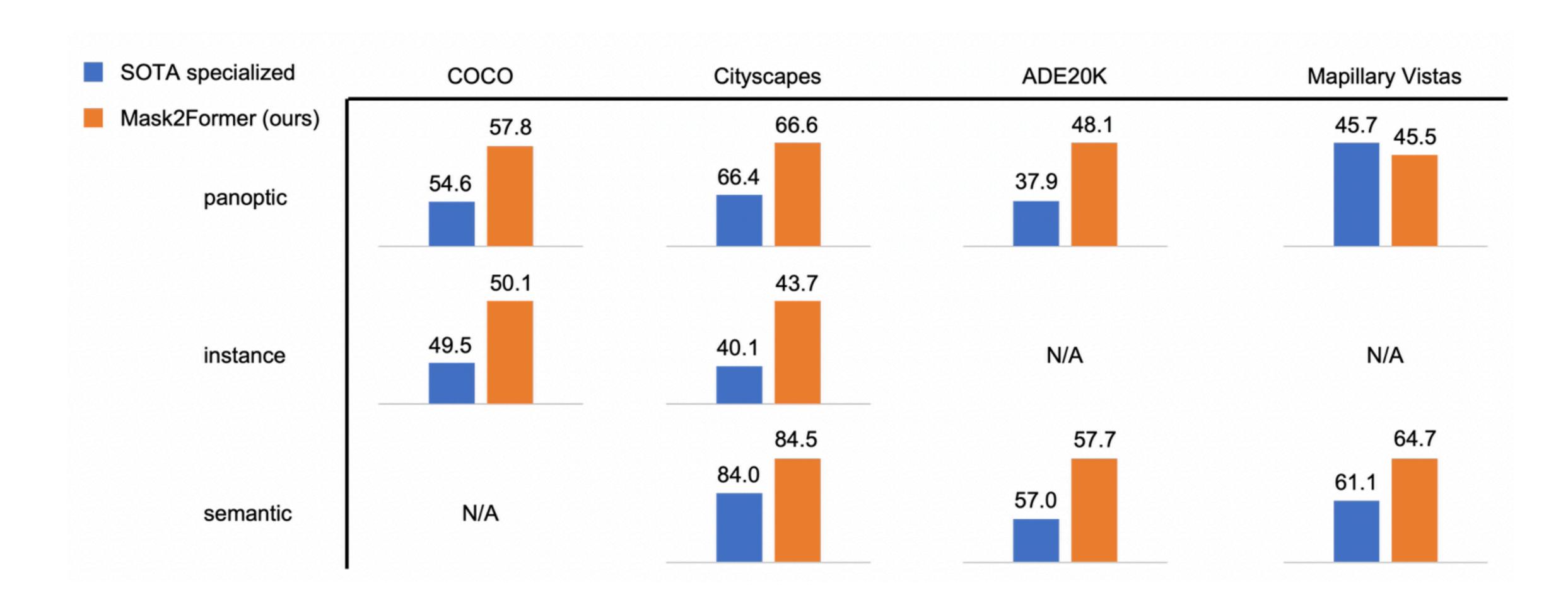
Mask2Former Masked Attention



Mask2Former Masked Attention

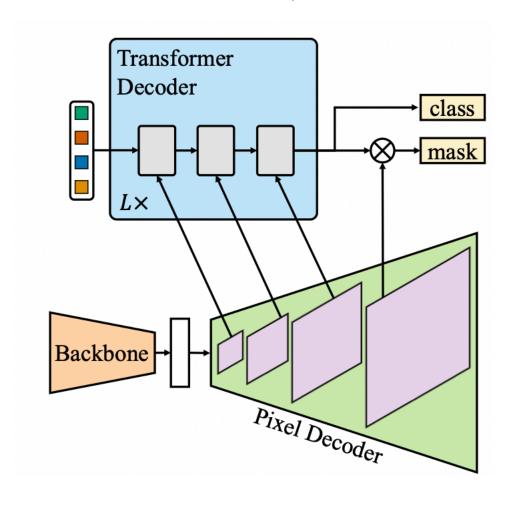


Mask2Former Masked Cross Attention

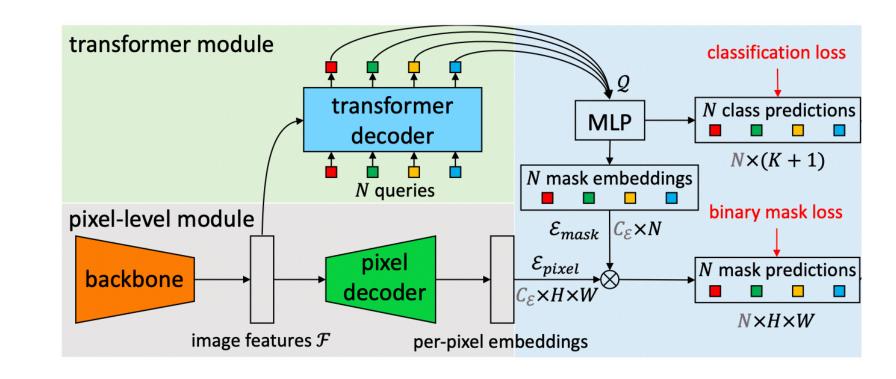


Questions

Mask2Former, CVPR'22



MaskFormer, NeurlPS'21



MED-VT, CVPR'23

