Introduction to Optimization

Instructor: Dr. Mennatullah Siam




Recap

* Linear Regression y

e Solving it using Normal Equation
Xw =y
w=X"X)"1Xx"y

General multivariate case




Optimization Intro

Goal:

» How to minimize an objective function?

Reference:

Heath, Michael T. Scientific computing: an introductory survey, second edition.




Objective Function

Fuel efficiency Engine performance




Objective Function

Vehicle Shape - Vehicle Weight

Parameters




Objective Function

» Let’s take linear regression as an example.

* We try to minimize this cost/objective function:

1 n
min — Z (' w — y)°
w Nn 0




Objective Function

» Let’s take linear regression as an example.

* We try to minimize this cost/objective function:

1 n
min — Z (' w — y)°
w N 0

Matrix-Vector Multiplication Form IIHI](XW — Yy )T(XW — Yy )
W
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Closed Form Solution!

e \WWe have seen the closed form solution last lecture.

w=X"X)"'X"y
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Closed Form Solution!

e \We have seen the closed form solution last lecture.

 But not all problems have a closed form solution!

Deep Neural Networks !!

w=X"X)"1xTy




Closed Form Solution! 0
 \We have seen the closed form solution last lecture.

 But not all problems have a closed form solution!

* Also with large scale data!

X

1M % 4096

1M examples in your dataset with 4096 feature vector per example
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How about Random Search?

e Let’s assume the simplest univariate case 1 feature per example.

I IR
min — Z (W — yl-)2
w I 0
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How about Random Search?

e Let’s assume the simplest univariate case 1 feature per example.
c(w)

Start with random w and select multiple random updates

Wi =WoH ()

n

! oy
c(w) =— ) (5w =) W

(=0
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How about Random Search?

e Let’s assume the simplest univariate case 1 feature per example.
c(w)

Start with random w and select multiple random updates

Can we do something smarter?
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The smarter approach

e Let’s assume the simplest univariate case 1 feature per example.
c(w)

c(w) = % ; (xw — y,)* ?

Which point has the lowest cost?
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The smarter approach

e Let’s assume the simplest univariate case 1 feature per example.
c(w)

c(w) = % % (xw — yl-)2

Slope is zero
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The smarter approach

e Let’s assume the simplest univariate case 1 feature per example.
c(w)

c(w) = % % (xw — yl-)2

d 1
g§=—°¢C (W) — Z 2xi(xiw — yi) Slope is zero
n
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The smarter approach

e Let’s assume the simplest univariate case 1 feature per example.
c(w)

Increasing,
' Derivative Is positive

Update Function: Wl — WO _— g

W
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The smarter approach

e Let’s assume the simplest univariate case 1 feature per example.
c(w)

| Increasing,
-/ Derivative is positive

Update Function: Wl — WO _— g

W

w1 Wo
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The smarter approach

e Let’s assume the simplest univariate case 1 feature per example.
c(w)

Decreasing,
Derivative is negative

Update Function: Wl — WO _— g
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The smarter approach

e Let’s assume the simplest univariate case 1 feature per example.
c(w)

Decreasing,
Derivative is negative

Update Function: Wl — WO _— g




Multivariate Case

» [et’s go to the multivariate case, | have 2 features per example.

o -
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+0.00010

. L4 +0.00015

+0.00020




Contour Plots

» [et’s go to the multivariate case, | have 2 features per example.

'L.OOOOO
+0.00005
+0.00010
<$0.00015
+0.00020

Which point has the lowest cost?




Multivariate Case

* Now we have gradients!
1 n
T 2
cw)=—) (Tw-y)
& i=0

dc(w)
aWI
dc(w)

Ve(w) =

aW2




Gradient Descent

 Thisis how it looks in the contour plot.

wtl = wl — Vew?)

What are the shapes of the vectors above?




0

Gradient Descent

 Thisis how it looks in the contour plot.

Negative gradient direction is perpendicular

. . ] to th t
Wl+1 — Wi — VC(WZ) Ws o the contour




Gradient Descent

 Thisis how it looks in the contour plot.

wth = wl — Vew?) :

—3 L




Gradient Descent

 Thisis how it looks in the contour plot.

wt = w' — Ve(w')

—3 L




earning Rate

e Can we control our update!

wt = w! —@V c(w')




Gradient Descent

* Algorithm simply:

Initial guess WO

Fori=0,1,..., M

witl = wl —aVew?)

End
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Learning Rate Choice

Which one is using a higher learning rate?

Which one is slower to converge?




0

Learning Rate Choice

Oscillating!




Exact Line Search

How far should we go then?
How to choose (f ?

* Algorithm simply:

Initial guess WO
Fori=0,1,....M
Compute Vc(w))




Numerical Example

o Let’s try a simple example:

L, 35
flx) = Exl +5x2




Numerical Example

o Let’s try a simple example:

L, 35
flx) = Exl +5x2

|
o= (1)




Numerical Example

o Let’s try a simple example:

S

| , v (M
Jx) = Zx + 5% J0 =\ 5y,




Numerical Example

o Let’s try a simple example:

S

| , v (M
f(X) — EXI T Exz Jx) = sz

x! = (i) VAxY) = (2)

i _ ' 0 _ 0 How d in. this function?
o = argm"‘]a{f(x an(X ))} ow do you min. this function




Numerical Example

o Let’s try a simple example:

S

| , v (M
Jx) = Zx + 5% J0 =\ 5y,

xY = (i) VAx?) = (2)

d
—f(x" = aVf(x")) =0
da




Numerical Example

o Let’s try a simple example:

S

Jx) = l362 + —x5 Vi(x) = (XI )
2L




Numerical Example

o Let’s try a simple example:

0 = G) V) = (g)

1
xl=x" —aVAX') = (5) 3 (5)

1 5




Numerical Example

o Let’s try a simple example:

TextBook Example 6.11




Batch vs Stochastic Gradient Descent 6’

* Algorithm simply:

Batch Gradient Descent

Initial guess WO

Fori=0,1,..., M

| A |
witl = ! — a Z Ve (w')
j=1

End




Batch vs Stochastic Gradient Descent 6’

* Algorithm simply:

Initial guess WO

Fori=0,1,..., M

witl =wi—achi(wi) J;i €11+, N}

End




What is Convexity?

J(w)

flax + (1 — a)y) < af(x) + (1 — a)f(y)
Forall a € [0,1]




What is Convexity?

fow)

Forall O & [0,1]




What is Convexity?

J(w)

< aftv) + (1 - ()
Forall a € [0,1]




What is Convexity?

Convex Function

J(w)

< af) + (1 - @)
Forall a € [0,1]




What is Convexity?

non-Convex Function

J(w)

< af) + (1 - @)
Forall a € [0,1]




What is Convexity?

J(w)
flax + (1 = a)y) < af(e) + (1 - af(y)
Forall o € [0,1] e
)




What is Convexity?

Strictly Convex Function

J(w)

flax + (1 — a)y) < af(x) + (1 — a)f(y)
Forall a € [0,1]
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Global & Local Minima

Global Minima




Global Minima
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15" Order Method

Let’s go back to univariate case.

We previously saw the first order version:

wl =w' — ac’'(w?)

Aw = — ac'(w)

Points down the hill




24 Order Method

c(w + Aw) = c(w) + c'(W)Aw + %C”(W)AWZ

Use second order Taylor approximation this time not first order

How to get minimum of any function?
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24 Order Gradient Descent

c(w + Aw) = c(w) + c'(W)Aw + %c”(w)sz

cw+ Aw) =c'(w)+c’"(w)Aw =0

dAw
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24 Order Gradient Descent

c(w + Aw) = c(w) + c'(W)Aw + %c”(w)sz

cw+ Aw) =c'(w)+c’"(w)Aw =0

dAw

c(w)

c"(w)

Aw = —




15" vs 2% Order Gradient Descent O

First Order Second Order
W)
Aw = — ac'(w) R




Newton’s Method

* Algorithm simply:

Initial guess WO
Fori=0,1,....M

I asl
il — i c(w)

¢’ (wh)

End




Newton’s Method

Can we do better?

i1 _ i V)

T @)

Next part of the lecture we will look into quasi newton methods
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